On modular functions in characteristic $p$
HTML articles powered by AMS MathViewer
- by Wen Châing Winnie Li PDF
- Trans. Amer. Math. Soc. 246 (1978), 231-259 Request permission
Abstract:
Let $k = {{\textbf {F}}_q}\left ( T \right )$ be a function field of one variable over a finite field ${{\textbf {F}}_q}$. For a nonzero polynomial $A \in {{\textbf {F}}_q}\left [ T \right ]$ one can define the modular group $\Gamma \left ( A \right )$. In this paper, we continue a theme introduced by Weil, and study the $\lambda$-harmonic modular functions for $\Gamma \left ( A \right )$. The main purpose of this paper is to give a natural definition of $\lambda$-harmonic Eisenstein series for $\Gamma \left ( A \right )$ so that we obtain a decomposition theory of $\lambda$-harmonic modular functions, analogous to the classical results of Hecke. That is, we prove \[ {\text {Modular}} {\text {Function}} {\text { = }} {\text {Eisenstein}} {\text {series}} \oplus {\text {Cusp Functions}}{\text {.}}\] Moreover, the dimension of the space generated by $\lambda$-harmonic Eisenstein series for $\Gamma \left ( A \right )$ is equal to the number of cusps of $\Gamma \left ( A \right )$, and so is independent of $\lambda$. For the definition of $\lambda$-harmonic Eisenstein series and the proof of decomposition theory, we consider two cases: (i) $\lambda \ne \pm 2\sqrt q$ and (ii) $\lambda = \pm 2\sqrt q$, separately. Case (i) is treated in the usual way. Case (ii), being a âdegenerateâ case, is more interesting and requires more complicated analysis.References
- P. Cartier, Fonctions harmoniques sur un arbre, Symposia Mathematica, Vol. IX (Convegno di Calcolo delle ProbabilitĂ , INDAM, Rome, 1971) Academic Press, London, 1972, pp. 203â270 (French). MR 0353467 P. Deligne, Formes modulaires et reprĂ©sentations l-adiques, SĂ©minaire Bourbaki, 1968/1969, Exp. 355, Lecture Notes in Math., vol. 179, Springer-Verlag, Berlin, 1971, pp. 139-172.
- P. Deligne, Les constantes des Ă©quations fonctionnelles des fonctions $L$, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 501â597 (French). MR 0349635
- Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids $1$, Ann. Sci. Ăcole Norm. Sup. (4) 7 (1974), 507â530 (1975) (French). MR 379379, DOI 10.24033/asens.1277
- G. Harder, Chevalley groups over function fields and automorphic forms, Ann. of Math. (2) 100 (1974), 249â306. MR 563090, DOI 10.2307/1971073
- Erich Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959 (German). Herausgegeben im Auftrage der Akademie der Wissenschaften zu Göttingen. MR 0104550
- Tomio Kubota, Elementary theory of Eisenstein series, Kodansha, Ltd., Tokyo; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1973. MR 0429749
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Wen Châing Winnie Li, Newforms and functional equations, Math. Ann. 212 (1975), 285â315. MR 369263, DOI 10.1007/BF01344466
- Hans Maass, Lectures on modular functions of one complex variable, Tata Institute of Fundamental Research Lectures on Mathematics, No. 29, Tata Institute of Fundamental Research, Bombay, 1964. Notes by Sunder Lal. MR 0218305 J.-P. Serre, Abres amalgames et ${\text {S}}{{\text {L}}_2}$, CollÚge de France 1968/1969 (note polycopiées, rédigrées avec la collaboration de H. Bass).
- André Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag New York, Inc., New York, 1967. MR 0234930, DOI 10.1007/978-3-662-00046-5
- AndrĂ© Weil, On the analogue of the modular group in characteristic $p$, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 211â223. MR 0271030 â, Dirichlet series and automorphic forms, Lecture Notes in Math., vol. 189, Springer-Verlag, Berlin and New York, 1971.
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 231-259
- MSC: Primary 10D05
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515538-9
- MathSciNet review: 515538