Persistent manifolds are normally hyperbolic
HTML articles powered by AMS MathViewer
- by Ricardo Mañé PDF
- Trans. Amer. Math. Soc. 246 (1978), 261-283 Request permission
Abstract:
Let M be a smooth manifold, $f: M \mid \text {a} {{C}^{1}}$ diffeomorphism and $V \subset M {\text {a}} {{\text {C}}^1}$ compact submanifold without boundary invariant under f (i.e. $f\left ( V \right ) = V$). We say that V is a persistent manifold for f if there exists a compact neighborhood U of V such that ${ \cap _{n \in {\textbf {z}}}} {f^n}\left ( U \right ) = V$, and for all diffeomorphisms $g: M \mid$ near to f in the ${C^1}$ topology the set ${V_g} = { \cap _{n \in {\textbf {z}}}}{g^n}\left ( U \right )$ is a ${C^1}$ submanifold without boundary ${C^1}$ near to V. Several authors studied sufficient conditions for persistence of invariant manifolds. Hirsch, Pugh and Shub proved that normally hyperbolic manifolds are persistent, where normally hyperbolic means that there exist a Tf-invariant splitting $TM/V = {N^s}V \oplus {N^u}V \oplus TV$ and constants $K > 0$, $0 < \lambda < 1$ such that: \[ \begin {gathered} \left \| {{{\left ( {Tf} \right )}^n}/N_x^sV} \right \| \leq K{\lambda ^n}, \left \| {{{\left ( {Tf} \right )}^{ - n}}/N_x^uV} \right \| \leq K{\lambda ^n}, \left \| {{{\left ( {Tf} \right )}^n}/N_x^sV} \right \| \cdot \left \| {{{\left ( {Tf} \right )}^{ - n}}/{T_{{f^n}\left ( x \right )}}V} \right \| \leq K{\lambda ^n} \end {gathered} \] for all $n > 0$, $x \in V$. In this paper we prove the converse result, namely that persistent manifolds are normally hyperbolic.References
-
J. Hadamard, Sur l’itération et les solutions asymptotiques des équations différentielles, Bull. Soc. Math. France 29 (1901), 224-228.
O. Perron, Über Stabilitat und asymptotischen Verhalten der Integrals von Differentialgleichnungssystemen, Math. Z. 29 (1928), 129-160.
- David Ruelle and Floris Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167–192. MR 284067, DOI 10.1007/BF01646553
- Jack K. Hale, Integral manifolds of perturbed differential systems, Ann. of Math. (2) 73 (1961), 496–531. MR 123786, DOI 10.2307/1970314 S. Diliberto, Perturbation theorems for periodic surfaces. I, II, Rend. Circ. Mat. Palermo 9 (1960), 265-299; 10 (1961), 111-161.
- Robert J. Sacker, A perturbation theorem for invariant Riemannian manifolds, Differential Equations and Dynamical Systems (Proc. Internat. Sympos., Mayaguez, P.R., 1965) Academic Press, New York, 1967, pp. 43–54. MR 0218700
- Ivan Kupka, Stabilité des variétés invariantes d’un champ de vecteurs pour les petites perturbations, C. R. Acad. Sci. Paris 258 (1964), 4197–4200 (French). MR 162036
- Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/72), 193–226. MR 287106, DOI 10.1512/iumj.1971.21.21017
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc. 76 (1970), 1015–1019. MR 292101, DOI 10.1090/S0002-9904-1970-12537-X R. Mañé, Variedades persitentes, Thesis, Inst. Mat. Pura Apl., Rio de Janeiro, 1973.
- Ricardo Mañé, Persitent manifolds are normally hyperbolic, Bull. Amer. Math. Soc. 80 (1974), 90–91. MR 339283, DOI 10.1090/S0002-9904-1974-13366-5
- Allan Gottlieb, Converses to the $\Omega$-stability and invariant lamination theorems, Trans. Amer. Math. Soc. 202 (1975), 369–383. MR 380885, DOI 10.1090/S0002-9947-1975-0380885-8
- Ricardo Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc. 229 (1977), 351–370. MR 482849, DOI 10.1090/S0002-9947-1977-0482849-4
- Charles C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967), 1010–1021. MR 226670, DOI 10.2307/2373414
- John Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301–308. MR 283812, DOI 10.1090/S0002-9947-1971-0283812-3
- Ricardo Mañé, Reduction of semilinear parabolic equations to finite dimensional $C^{1}$ flows, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977, pp. 361–378. MR 0451309
- James F. Selgrade, Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc. 203 (1975), 359–390. MR 368080, DOI 10.1090/S0002-9947-1975-0368080-X
- Jaroslav Kurzweil, Invariant manifolds for flows, Differential Equations and Dynamical Systems (Proc. Internat. Sympos., Mayaguez, P.R., 1965) Academic Press, New York, 1967, pp. 431–468. MR 0218698
- Charles Pugh and Michael Shub, Axiom $\textrm {A}$ actions, Invent. Math. 29 (1975), no. 1, 7–38. MR 377989, DOI 10.1007/BF01405171
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 261-283
- MSC: Primary 58F15
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515539-0
- MathSciNet review: 515539