The heat equation on a compact Lie group
HTML articles powered by AMS MathViewer
- by H. D. Fegan PDF
- Trans. Amer. Math. Soc. 246 (1978), 339-357 Request permission
Abstract:
Recently there has been much work related to Macdonald’s $\eta$-function identities. In the present paper the aim is to give another proof of these identities using analytical methods. This is done by using the heat equation to obtain Kostant’s form of the identities. The basic idea of the proof is to look at subgroups of the Lie group which are isomorphic to the group $SU(2)$. When this has been done the problem has essentially been reduced to that for the group $SU(2)$, which is a classical result.References
- M. Berger, Geometry of the spectrum. I, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 129–152. MR 0383459
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313, DOI 10.1007/BFb0064643
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635–652. MR 522147, DOI 10.1090/S0002-9904-1972-12971-9
- H. D. Fegan, The heat equation and modular forms, J. Differential Geometry 13 (1978), no. 4, 589–602 (1979). MR 570220, DOI 10.4310/jdg/1214434710
- Hans Freudenthal and H. de Vries, Linear Lie groups, Pure and Applied Mathematics, Vol. 35, Academic Press, New York-London, 1969. MR 0260926
- S. Helgason, Fundamental solutions of invariant differential operators on symmetric spaces, Amer. J. Math. 86 (1964), 565–601. MR 165032, DOI 10.2307/2373024
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X C. G. J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Konigsberg, 1829. Reprinted: Gesammelte Werke, Erster Band, Berlin, 1881, pp. 49-239.
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Bertram Kostant, On Macdonald’s $\eta$-function formula, the Laplacian and generalized exponents, Advances in Math. 20 (1976), no. 2, 179–212. MR 485661, DOI 10.1016/0001-8708(76)90186-9
- I. G. Macdonald, Affine root systems and Dedekind’s $\eta$-function, Invent. Math. 15 (1972), 91–143. MR 357528, DOI 10.1007/BF01418931
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 339-357
- MSC: Primary 22E30; Secondary 10D20, 58G40
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515542-0
- MathSciNet review: 515542