Hardy spaces of close-to-convex functions and their derivatives
HTML articles powered by AMS MathViewer
- by Finbarr Holland and John B. Twomey PDF
- Trans. Amer. Math. Soc. 246 (1978), 359-372 Request permission
Abstract:
Let $f(z) = \sum \nolimits _1^\infty {{a_n}} {z^n}$ be close-to-convex on the unit disc. It is shown that (a) if $\lambda > 0$, then f belongs to the Hardy space ${H^\lambda }$ if and only if ${\sum {{n^{\lambda - 2}}\left | {{a_n}} \right |} ^\lambda }$ is finite and that (b) if $0 < \lambda < 1$, then $fâ \in {H^\lambda }$ if and only if either $\sum {{n^{2\lambda - 2}}} {\left | {{a_n}} \right |^\lambda }$ or, equivalently, $\int _0^1 {{M^\lambda }(r,fâ)} dr$ is convergent. It is noted that the first of these results does not extend to the full class of univalent functions and that the second is best possible in a number of different senses.References
- J. Clunie, On schlicht functions, Ann. of Math. (2) 69 (1959), 511â519. MR 107715, DOI 10.2307/1970020
- J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229â233. MR 110814, DOI 10.1112/jlms/s1-35.2.229
- J. Clunie and Ch. Pommerenke, On the coefficients of close-to-convex univalent functions, J. London Math. Soc. 41 (1966), 161â165. MR 190321, DOI 10.1112/jlms/s1-41.1.161
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- P. J. Eenigenburg and F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335â346. MR 306505, DOI 10.1307/mmj/1029000519 G. H. Hardy and J. E. Littlewood, An inequality, Math. Z. 40 (1935), 1-40.
- W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48, Cambridge University Press, Cambridge, 1958. MR 0108586
- F. Holland and J. B. Twomey, On Hardy classes and the area function, J. London Math. Soc. (2) 17 (1978), no. 2, 275â283. MR 486532, DOI 10.1112/jlms/s2-17.2.275
- F. Holland and D. K. Thomas, On the order of a starlike function, Trans. Amer. Math. Soc. 158 (1971), 189â201. MR 277705, DOI 10.1090/S0002-9947-1971-0277705-5
- Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169â185 (1953). MR 54711
- A. J. Lohwater, G. Piranian, and W. Rudin, The derivative of a schlicht function, Math. Scand. 3 (1955), 103â106. MR 72218, DOI 10.7146/math.scand.a-10430
- Ch. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209â224. MR 137830, DOI 10.1112/jlms/s1-37.1.209
- Harold S. Shapiro, A class of singular functions, Canadian J. Math. 20 (1968), 1425â1431. MR 233946, DOI 10.4153/CJM-1968-143-9 A. Zygmund, Trigonometric series. I, Cambridge Univ. Press, Cambridge, 1959.
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 359-372
- MSC: Primary 30D55
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515543-2
- MathSciNet review: 515543