On the first occurrence of values of a character
HTML articles powered by AMS MathViewer
- by G. Kolesnik and E. G. Straus PDF
- Trans. Amer. Math. Soc. 246 (1978), 385-394 Request permission
Abstract:
Let $\chi$ be a character of order $k (\bmod n)$, and let ${g_m}(\chi )$ be the smallest positive integer at which $\chi$ attains its $(m + 1)$st nonzero value. We consider fixed k and large n and combine elementary group-theoretic considerations with the known results on character sums and sets of integers without large prime factors to obtain estimates for ${g_m}(\chi )$.References
- D. A. Burgess, On character sums and $L$-series. II, Proc. London Math. Soc. (3) 13 (1963), 524β536. MR 148626, DOI 10.1112/plms/s3-13.1.524
- James H. Jordan, The distribution of cubic and quintic non-residues, Pacific J. Math. 16 (1966), 77β85. MR 186619, DOI 10.2140/pjm.1966.16.77
- Karl K. Norton, Numbers with small prime factors, and the least $k$th power non-residue, Memoirs of the American Mathematical Society, No. 106, American Mathematical Society, Providence, R.I., 1971. MR 0286739
- Karl K. Norton, Upper bounds for $k\textrm {th}$ power coset representatives modulo $n$, Acta Arith. 15 (1968/69), 161β179. MR 240065, DOI 10.4064/aa-15-2-161-179 I. M. Vinogradov, On the bound of the least non-residue of nth powers, Bull. Acad. Sci. USSR 20 (1926), 47-58 (Trans. Amer. Math. Soc. 29 (1927), 218-226).
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 385-394
- MSC: Primary 10H35
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515545-6
- MathSciNet review: 515545