Dense subgroups of Lie groups. II
HTML articles powered by AMS MathViewer
- by David Zerling PDF
- Trans. Amer. Math. Soc. 246 (1978), 419-428 Request permission
Abstract:
Let G be a dense analytic subgroup of an analytic group L. Then G contains a maximal (CA) closed normal analytic suhgroup M and a closed abelian subgroup $A = Z(G) \times E$, where E is a closed vector subgroup of G, such that $G = M \cdot A$, $M \cap A = Z(G)$, $\overline M = M \cdot \overline {Z(G)}$, and $L = M \cdot \overline A$. We also indicate the extent to which a (CA) analytic group is uniquely determined by its center and a dense analytic subgroup.References
- Morikuni Goto, Analytic subgroups of $\textrm {GL}(n,\,\textbf {R})$, Tohoku Math. J. (2) 25 (1973), 197β199. MR 322099, DOI 10.2748/tmj/1178241378
- W. T. van Est, Dense imbeddings of Lie groups, Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math. 13 (1951), 321β328. MR 0044530, DOI 10.1016/S1385-7258(51)50046-X β, Dense imbeddings of Lie groups. II, Nederl. Akad. Wetensch. Proc. Ser. A 55 = Indag. Math. 14 (1952), 255-274.
- W. T. van Est, Some theorems on ${\rm (CA)}$ Lie algebras. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 546β557, 558β568. MR 0053091
- David Zerling, Some theorems on $(\textrm {CA})$ analytic groups, Trans. Amer. Math. Soc. 205 (1975), 181β192. MR 364548, DOI 10.1090/S0002-9947-1975-0364548-0
- David Zerling, Some theorem on (CA) analytic groups. II, Tohoku Math. J. (2) 29 (1977), no.Β 3, 325β333. MR 463351, DOI 10.2748/tmj/1178240603
- David Zerling, Dense subgroups of Lie groups, Proc. Amer. Math. Soc. 62 (1977), no.Β 2, 349β352. MR 435289, DOI 10.1090/S0002-9939-1977-0435289-3
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 419-428
- MSC: Primary 22E15
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515548-1
- MathSciNet review: 515548