Liftings and the construction of stochastic processes
HTML articles powered by AMS MathViewer
- by Donald L. Cohn PDF
- Trans. Amer. Math. Soc. 246 (1978), 429-438 Request permission
Abstract:
It is shown that if the continuum hypothesis holds, then the use of liftings to construct modifications of stochastic processes can replace measurable processes with nonmeasurable ones. The use of liftings to choose the paths, rather than the random variables, of a stochastic process is investigated.References
- Donald L. Cohn, Measurable choice of limit points and the existence of separable and measurable processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 161–165. MR 305444, DOI 10.1007/BF00532735
- R. M. Dudley, A counterexample on measurable processes, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 57–66. MR 0415747
- J. Hoffmann-Jørgensen, Existence of measurable modifications of stochastic processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 205–207. MR 326818, DOI 10.1007/BF00535892
- A. Ionescu Tulcea and C. Ionescu Tulcea, On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 63–97. MR 0212122
- A. Ionescu Tulcea and C. Ionescu Tulcea, Liftings for abstract valued functions and separable stochastic processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 114–118. MR 277026, DOI 10.1007/BF00537015
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York, Inc., New York, 1969. MR 0276438, DOI 10.1007/978-3-642-88507-5
- Kiyosi Itô, The canonical modification of stochastic processes, J. Math. Soc. Japan 20 (1968), 130–150. MR 226719, DOI 10.2969/jmsj/02010130
- Kiyoshi Itô, Canonical measurable random functions, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) Univ. Tokyo Press, Tokyo, 1970, pp. 369–377. MR 0281250
- Gabriel Mokobodzki, Relèvement borélien compatible avec une classe d’ensembles négligeables. Application à la désintégration des mesures, Séminaire de Probabilités, IX (Seconde Partie, Univ. Strasbourg, Strasbourg, années universitaires 1973/1974 et 1974/1975), Lecture Notes in Math., Vol. 465, Springer, Berlin, 1975, pp. 437–442. MR 0430781
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 429-438
- MSC: Primary 60G05; Secondary 46G15
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515549-3
- MathSciNet review: 515549