Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Parabolic function spaces with mixed norm
HTML articles powered by AMS MathViewer

by V. R. Gopala Rao PDF
Trans. Amer. Math. Soc. 246 (1978), 451-461 Request permission

Abstract:

The spaces $\mathcal {H}_\alpha ^p$ of parabolic Bessel potentials were introduced by B. F. Jones and R. J. Bagby. We prove a Sobolev-type imbedding theorem for $\mathcal {H}_\alpha ^{{p_1},{p_2}}$ (multinormed versions of $\mathcal {H}_\alpha ^p$) when $\alpha$ is a positive integer k, $1 < {p_1}$, ${p_2} < \infty$. In particular this theorem holds for $W_{2l,l}^p$, since $\mathcal {H}_{2l}^p \equiv W_{2l,l}^p$. We use the concepts of parabolic Riesz transforms and half-time derivatives introduced by us elsewhere.
References
  • Richard J. Bagby, Lebesgue spaces of parabolic potentials, Illinois J. Math. 15 (1971), 610–634. MR 291792
  • David R. Adams and Richard J. Bagby, Translation-dilation invariant estimates for Riesz potentials, Indiana Univ. Math. J. 23 (1973/74), 1051–1067. MR 348471, DOI 10.1512/iumj.1974.23.23086
  • A. Benedek and R. Panzone, The space $L^{p}$, with mixed norm, Duke Math. J. 28 (1961), 301–324. MR 126155, DOI 10.1215/S0012-7094-61-02828-9
  • A. Benedek, Spaces of differentiable functions and distributions, with mixed norm, Rev. Un. Mat. Argentina 22 (1964), 3–21 (1964). MR 167838
  • Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York, Inc., New York, 1969. Third revised printing. MR 0248435, DOI 10.1007/978-3-662-30722-9
  • B. Frank Jones Jr., Lipschitz spaces and the heat equation, J. Math. Mech. 18 (1968/69), 379–409. MR 0511929, DOI 10.1512/iumj.1969.18.18030
  • B. Frank Jones Jr., Singular integrals and a boundary value problem for the heat equation. , Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 196–207. MR 0235432
  • O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R. I., 1968. P. I. Lizorkin, Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms, Math. USSR-Izv. 4 (1970), 225-254.
  • V. R. Gopala Rao, A characterization of parabolic function spaces, Amer. J. Math. 99 (1977), no. 5, 985–993. MR 500114, DOI 10.2307/2373995
  • C. H. Sampson, A characterization of parabolic Lebesgue spaces, Thesis, Rice Univ., 1968.
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35
  • Retrieve articles in all journals with MSC: 46E35
Additional Information
  • © Copyright 1978 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 246 (1978), 451-461
  • MSC: Primary 46E35
  • DOI: https://doi.org/10.1090/S0002-9947-1978-0515551-1
  • MathSciNet review: 515551