The fixed-point construction in equivariant bordism
HTML articles powered by AMS MathViewer
- by Russell J. Rowlett PDF
- Trans. Amer. Math. Soc. 246 (1978), 473-481 Request permission
Abstract:
Consider the bordism ${\Omega _ {\ast }}(G)$ of smooth G-actions. If K is a subgroup of G, with normalizer NK, there is a standard $NK/K$-action on ${\Omega _ {\ast }}(K)$(All, Proper). If M has a smooth G-action, a tubular neighborhood of the fixed set of K in M represents an element of ${\Omega _ {\ast }}(K){({\text {All, Proper}})^{NK/K}}$. One thus obtains the “fixed point homomorphism” $\phi$ carrying ${\Omega _ {\ast }}(G)$ to the sum of the ${\Omega _ {\ast }}(K){({\text {All, Proper}})^{NK/K}}$, summed over conjugacy classes of subgroups K. Let P be the collection of primes not dividing the order of G. We show that the P-localization of $\phi$ is an isomorphism, and give several applications.References
- Pierre E. Conner, Lectures on the action of a finite group, Lecture Notes in Mathematics, No. 73, Springer-Verlag, Berlin-New York, 1968. MR 0258023, DOI 10.1007/BFb0079602
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- P. E. Conner and Larry Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 117–221. MR 267571, DOI 10.1007/BF02684888
- John Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272–284. MR 77122, DOI 10.2307/1969609
- Erich Ossa, Unitary bordism of abelian groups, Proc. Amer. Math. Soc. 33 (1972), 568–571. MR 293666, DOI 10.1090/S0002-9939-1972-0293666-3
- R. J. Rowlett, Bounding a free action of an abelian group, Duke Math. J. 41 (1974), 381–385. MR 341506, DOI 10.1215/S0012-7094-74-04143-X
- Russell J. Rowlett, Torsion in the bordism of oriented involutions, Trans. Amer. Math. Soc. 231 (1977), no. 2, 541–548. MR 445521, DOI 10.1090/S0002-9947-1977-0445521-2
- R. E. Stong, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 291–316. MR 0273644
- R. E. Stong, Unoriented bordism and actions of finite groups, Memoirs of the American Mathematical Society, No. 103, American Mathematical Society, Providence, R.I., 1970. MR 0273645 E. Wheeler, Oriented bordism of cyclic group actions, Thesis, Univ. of Virginia, Charlottesville, 1973.
- E. R. Wheeler, Localizing equivariant bordism, Proc. Amer. Math. Soc. 44 (1974), 485–491. MR 345122, DOI 10.1090/S0002-9939-1974-0345122-3
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 473-481
- MSC: Primary 57R85
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515553-5
- MathSciNet review: 515553