On a theorem of Steinitz and Levy
HTML articles powered by AMS MathViewer
- by Gadi Moran PDF
- Trans. Amer. Math. Soc. 246 (1978), 483-491 Request permission
Abstract:
Let $\sum \nolimits _{n \in \omega } {h(n)}$ be a conditionally convergent series in a real Banach space B. Let $S(h)$ denote the set of sums of the convergent rearrangements of this series. A well-known theorem of Riemann states that $S(h) = B$ if $B = R$, the reals. A generalization of Riemann’s Theorem, due independently to Levy [L] and Steinitz [S], states that if B is finite dimensional, then $S(h)$ is a linear manifold in B of dimension $> 0$. Another generalization of Riemann’s Theorem [M] can be stated as an instance of the Levy-Steinitz Theorem in the Banach space of regulated real functions on the unit interval I. This instance generalizes to the Banach space of regulated B-valued functions on I, where B is finite dimensional, implying a generalization of the Levy-Steinitz Theorem.References
-
V. Bergström, Eine neuer Beweis eines satzes von E. Steinitz, Hamburgische Abhandlungen 8 (1930), 148-152.
—, Zwei Sätze über ebene Vectorpolygone, Hamburgische Abhandlungen 8 (1930), 205-219.
- Vladimir Drobot, Rearrangements of series of functions, Trans. Amer. Math. Soc. 142 (1969), 239–248. MR 246022, DOI 10.1090/S0002-9947-1969-0246022-2
- A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192–197. MR 33975, DOI 10.1073/pnas.36.3.192
- Casper Goffman, Gadi Moran, and Daniel Waterman, The structure of regulated functions, Proc. Amer. Math. Soc. 57 (1976), no. 1, 61–65. MR 401993, DOI 10.1090/S0002-9939-1976-0401993-5
- T. H. Hildebrandt, On unconditional convergence in normed vector spaces, Bull. Amer. Math. Soc. 46 (1940), 959–962. MR 3448, DOI 10.1090/S0002-9904-1940-07344-6 P. Levy, Sur les séries semi-convergentes, Nouv. Ann. Math. 64 (1905), 506-511.
- Gadi Moran, Of regulated and steplike functions, Trans. Amer. Math. Soc. 231 (1977), no. 1, 249–257. MR 499028, DOI 10.1090/S0002-9947-1977-0499028-7 W. Orlicz, Beiträge zur Theorie der orthogonal Entwicklung. II, Studia Math. 1 (1929), 242. E. Steinitz, Bedingt Konvergente Reihen und konvexe Systeme, J. Mathematik 143 (1913), 128-175.
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 483-491
- MSC: Primary 40A99; Secondary 46B15
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515554-7
- MathSciNet review: 515554