Some metric properties of piecewise monotonic mappings of the unit interval
HTML articles powered by AMS MathViewer
- by Sherman Wong PDF
- Trans. Amer. Math. Soc. 246 (1978), 493-500 Request permission
Abstract:
In this note, the result of Lasota and Yorke on the existence of invariant measures for piecewise ${C^2}$ functions is extended to a larger class of piecewise continuous functions. Also the result of Li and Yorke on the existence of ergodic measures for piecewise ${C^2}$ functions is extended for the above class of functions.References
- Rufus Bowen, Bernoulli maps of the interval, Israel J. Math. 28 (1977), no. 1-2, 161–168. MR 453974, DOI 10.1007/BF02759791
- Roland Fischer, Ergodische Theorie von Ziffernentwicklungen in Wahrscheinlichkeitsräumen, Math. Z. 128 (1972), 217–230 (German). MR 313475, DOI 10.1007/BF01111705 J. Guckenheimer, A strange, strange attractor, Lecture Notes Appl. Math. Sci., vol. 19, Springer-Verlag, Berlin and New York, 1976, pp. 368-391. A. Kosyakin and E. Sandier, Ergodic properties of a class of piecewise smooth mappings of the interval, Izv. Vysš. Učebn. Zaved. Matematika 72 (1972), no. 3, 32-40. (Russian)
- Z. S. Kowalski, Invariant measures for piecewise monotonic transformations, Probability—Winter School (Proc. Fourth Winter School, Karpacz, 1975) Lecture Notes in Math., Vol. 472, Springer, Berlin, 1975, pp. 77–94. MR 0390173 O. E. Lanford, Qualitative and statistical theory of dissipative systems, Lectures from 1976 CIME School of Statistical Mechanics.
- A. Lasota and James A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488 (1974). MR 335758, DOI 10.1090/S0002-9947-1973-0335758-1
- Tien Yien Li and James A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183–192. MR 457679, DOI 10.1090/S0002-9947-1978-0457679-0 E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130-141.
- V. A. Rohlin, Exact endomorphism of a Lebesgue space, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 14 (1964), 443–474 (Hungarian). MR 0228654
- Walter Rudin, Principles of mathematical analysis, 2nd ed., McGraw-Hill Book Co., New York, 1964. MR 0166310
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- John Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 59–72. MR 556582, DOI 10.1007/BF02684769
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 493-500
- MSC: Primary 28D05; Secondary 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515555-9
- MathSciNet review: 515555