Distribution of eigenvalues of a two-parameter system of differential equations
HTML articles powered by AMS MathViewer
- by M. Faierman
- Trans. Amer. Math. Soc. 247 (1979), 45-86
- DOI: https://doi.org/10.1090/S0002-9947-1979-0517686-7
- PDF | Request permission
Abstract:
In this paper two simultaneous Sturm-Liouville systems are considered, the first defined for the interval $0 \leqslant {x_1} \leqslant 1$, the second for the interval $0 \leqslant {x_{2 }} \leqslant 1$, and each containing the parameters $\lambda$ and $\mu$. Denoting the eigenvalues and eigenfunctions of the simultaneous systems by $({\lambda _{j,k}},{\mu _{j,k}})$ and ${\psi _{j,k}}({x_{1,}}{x_2})$, respectively, $j, k = 0, 1, \ldots$, asymptotic methods are employed to derive asymptotic formulae for these expressions, as $j + k \to \infty$ when $(j, k)$ is restricted to lie in a certain sector of the $(x, y)$ -plane. These results constitute a further stage in the development of the theory related to the behaviour of the eigenvalues and eigenfunctions of multiparameter Sturm-Liouville systems and answer an open question concerning the uniform boundedness of the ${\psi _{j,k}} ({x_1}, {x_2})$.References
- F. V. Atkinson, Multiparameter eigenvalue problems, Mathematics in Science and Engineering, Vol. 82, Academic Press, New York-London, 1972. Volume I: Matrices and compact operators. MR 0451001
- F. V. Atkinson, Multiparameter spectral theory, Bull. Amer. Math. Soc. 74 (1968), 1–27. MR 220078, DOI 10.1090/S0002-9904-1968-11866-X
- Patrick J. Browne, A multi-parameter eigenvalue problem, J. Math. Anal. Appl. 38 (1972), 553–568. MR 305118, DOI 10.1016/0022-247X(72)90068-6
- A. A. Dorodnicyn, Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order, Amer. Math. Soc. Transl. (2) 16 (1960), 1–101. MR 0117381, DOI 10.1090/trans2/016/01
- M. Faierman, The completeness and expansion theorems associated with the multi-parameter eigenvalue problem in ordinary differential equations, J. Differential Equations 5 (1969), 197–213. MR 232991, DOI 10.1016/0022-0396(69)90112-0
- M. Faierman, On the distribution of the eigenvalues of a two-parameter system of ordinary differential equations of the second order, SIAM J. Math. Anal. 8 (1977), no. 5, 854–870. MR 447694, DOI 10.1137/0508065 —, An eigenfunction expansion associated with a two-parameter system of ordinary differential equations of the second order, preprint 125, Ben Gurion University of the Negev, Beer Sheva, 1975. —, Bounds for the eigenfunctions of a two-parameter system of ordinary differential equations of the second order (submitted).
- B. D. Sleeman, Completeness and expansion theorems for a two-parameter eigenvalue problem in ordinary differential equations using variational principles, J. London Math. Soc. (2) 6 (1973), 705–712. MR 328196, DOI 10.1112/jlms/s2-6.4.705
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 247 (1979), 45-86
- MSC: Primary 34B25; Secondary 34E05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0517686-7
- MathSciNet review: 517686