## Distribution of eigenvalues of a two-parameter system of differential equations

HTML articles powered by AMS MathViewer

- by M. Faierman
- Trans. Amer. Math. Soc.
**247**(1979), 45-86 - DOI: https://doi.org/10.1090/S0002-9947-1979-0517686-7
- PDF | Request permission

## Abstract:

In this paper two simultaneous Sturm-Liouville systems are considered, the first defined for the interval $0 \leqslant {x_1} \leqslant 1$, the second for the interval $0 \leqslant {x_{2 }} \leqslant 1$, and each containing the parameters $\lambda$ and $\mu$. Denoting the eigenvalues and eigenfunctions of the simultaneous systems by $({\lambda _{j,k}},{\mu _{j,k}})$ and ${\psi _{j,k}}({x_{1,}}{x_2})$, respectively, $j, k = 0, 1, \ldots$, asymptotic methods are employed to derive asymptotic formulae for these expressions, as $j + k \to \infty$ when $(j, k)$ is restricted to lie in a certain sector of the $(x, y)$ -plane. These results constitute a further stage in the development of the theory related to the behaviour of the eigenvalues and eigenfunctions of multiparameter Sturm-Liouville systems and answer an open question concerning the uniform boundedness of the ${\psi _{j,k}} ({x_1}, {x_2})$.## References

- F. V. Atkinson,
*Multiparameter eigenvalue problems*, Mathematics in Science and Engineering, Vol. 82, Academic Press, New York-London, 1972. Volume I: Matrices and compact operators. MR**0451001** - F. V. Atkinson,
*Multiparameter spectral theory*, Bull. Amer. Math. Soc.**74**(1968), 1–27. MR**220078**, DOI 10.1090/S0002-9904-1968-11866-X - Patrick J. Browne,
*A multi-parameter eigenvalue problem*, J. Math. Anal. Appl.**38**(1972), 553–568. MR**305118**, DOI 10.1016/0022-247X(72)90068-6 - A. A. Dorodnicyn,
*Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order*, Amer. Math. Soc. Transl. (2)**16**(1960), 1–101. MR**0117381**, DOI 10.1090/trans2/016/01 - M. Faierman,
*The completeness and expansion theorems associated with the multi-parameter eigenvalue problem in ordinary differential equations*, J. Differential Equations**5**(1969), 197–213. MR**232991**, DOI 10.1016/0022-0396(69)90112-0 - M. Faierman,
*On the distribution of the eigenvalues of a two-parameter system of ordinary differential equations of the second order*, SIAM J. Math. Anal.**8**(1977), no. 5, 854–870. MR**447694**, DOI 10.1137/0508065
—, - B. D. Sleeman,
*Completeness and expansion theorems for a two-parameter eigenvalue problem in ordinary differential equations using variational principles*, J. London Math. Soc. (2)**6**(1973), 705–712. MR**328196**, DOI 10.1112/jlms/s2-6.4.705 - G. N. Watson,
*A treatise on the theory of Bessel functions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR**1349110**

*An eigenfunction expansion associated with a two-parameter system of ordinary differential equations of the second order*, preprint 125, Ben Gurion University of the Negev, Beer Sheva, 1975. —,

*Bounds for the eigenfunctions of a two-parameter system of ordinary differential equations of the second order*(submitted).

## Bibliographic Information

- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**247**(1979), 45-86 - MSC: Primary 34B25; Secondary 34E05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0517686-7
- MathSciNet review: 517686