On the construction of branched coverings of low-dimensional manifolds
Authors:
Israel Berstein and Allan L. Edmonds
Journal:
Trans. Amer. Math. Soc. 247 (1979), 87-124
MSC:
Primary 57M10
DOI:
https://doi.org/10.1090/S0002-9947-1979-0517687-9
MathSciNet review:
517687
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Several general results are proved concerning the existence and uniqueness of various branched coverings of manifolds in dimensions 2 and 3. The results are applied to give a rather complete account as to which 3-manifolds are branched coverings of ${S^3}$, ${S^2} \times {S^1}$, ${P^2} \times {S^1}$, or the nontrivial ${S^3}$-bundle over ${S^1}$, and which degrees can be achieved in each case. In particular, it is shown that any closed nonorientable 3-manifold is a branched covering of ${P^2} \times {S^1}$ of degree which can be chosen to be at most 6 and with branch set a simple closed curve. This result is applied to show that a closed nonorientable 3-manifold admits an open book decomposition which is induced from such a decomposition of ${P^2} \times {S^1}$.
- James W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), no. 8, 370–372. MR 1560318, DOI https://doi.org/10.1090/S0002-9904-1920-03319-7 ---, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93-95.
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- D. B. A. Epstein, The degree of a map, Proc. London Math. Soc. (3) 16 (1966), 369–383. MR 192475, DOI https://doi.org/10.1112/plms/s3-16.1.369
- George K. Francis, Assembling compact Riemann surfaces with given boundary curves and branch points on the sphere, Illinois J. Math. 20 (1976), no. 2, 198–217. MR 402776
- Maurice Heins, Interior mapping of an orientable surface into $S^2$, Proc. Amer. Math. Soc. 2 (1951), 951–952. MR 45221, DOI https://doi.org/10.1090/S0002-9939-1951-0045221-4
- Hugh M. Hilden, Three-fold branched coverings of $S^{3}$, Amer. J. Math. 98 (1976), no. 4, 989–997. MR 425968, DOI https://doi.org/10.2307/2374037
- Ulrich Hirsch, Über offene Abbildungen auf die $3$-Sphäre, Math. Z. 140 (1974), 203–230 (German). MR 362313, DOI https://doi.org/10.1007/BF01214163
- Ulrich Hirsch, Offene Abbildungen von Flächen auf die $2$-Sphäre mit minimalem Defekt, Arch. Math. (Basel) 27 (1976), no. 6, 649–656. MR 431173, DOI https://doi.org/10.1007/BF01224734
- Ulrich Hirsch, On regular homotopy of branched coverings of the sphere, Manuscripta Math. 21 (1977), no. 3, 293–306. MR 482736, DOI https://doi.org/10.1007/BF01167881
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI https://doi.org/10.1007/BF01199469
- W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 307–317. MR 145498, DOI https://doi.org/10.1017/s0305004100036926
- W. B. R. Lickorish, A finite set of generators for the homeotopy group of a $2$-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769–778. MR 171269, DOI https://doi.org/10.1017/s030500410003824x
- J. Lüroth, Note über Verzweigungsschnitte und Querschnitte in einer Riemann’schen Fläche, Math. Ann. 4 (1871), no. 2, 181–184 (German). MR 1509744, DOI https://doi.org/10.1007/BF01442591
- José M. Montesinos, Three-manifolds as $3$-fold branched covers of $S^{3}$, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 85–94. MR 394630, DOI https://doi.org/10.1093/qmath/27.1.85
- John Stallings, On fibering certain $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95–100. MR 0158375 S. Stöilow, Principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, Paris, 1938.
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI https://doi.org/10.1007/BF02566923
- R. J. Wille, Sur la transformation intérieure d’une surface non orientable sur le plan projectif, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15 (1953), 63–65 (French). MR 0054059
- John W. Wood, Foliations on $3$-manifolds, Ann. of Math. (2) 89 (1969), 336–358. MR 248873, DOI https://doi.org/10.2307/1970673
Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M10
Retrieve articles in all journals with MSC: 57M10
Additional Information
Keywords:
Branched covering,
3-manifold,
2-manifold,
nonorientable 3 manifold,
open book decomposition,
classical knot
Article copyright:
© Copyright 1979
American Mathematical Society