Thickenings of CW complexes of the form $S^{m}\cup _{\alpha }e^{n}$
HTML articles powered by AMS MathViewer
- by George Cooke
- Trans. Amer. Math. Soc. 247 (1979), 177-209
- DOI: https://doi.org/10.1090/S0002-9947-1979-0517691-0
- PDF | Request permission
Abstract:
Necessary conditions are given for the existence of a thickening of ${S^m} { \cup _\alpha } {e^n}$ in codimension k. I give examples of such complexes requiring arbitrarily large codimension in order to thicken. Sufficient conditions are given for the existence of a tractable thickening in codimension $k + 1$. The methods used include the study of the reduced product space of a pair of CW complexes.References
- W. D. Barcus and M. G. Barratt, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57–74. MR 97060, DOI 10.1090/S0002-9947-1958-0097060-7
- A. L. Blakers and W. S. Massey, The homotopy groups of a triad. II, Ann. of Math. (2) 55 (1952), 192–201. MR 44836, DOI 10.2307/1969428
- A. L. Blakers and W. S. Massey, The homotopy groups of a triad. III, Ann. of Math. (2) 58 (1953), 409–417. MR 58971, DOI 10.2307/1969744
- A. L. Blakers and W. S. Massey, Products in homotopy theory, Ann. of Math. (2) 58 (1953), 295–324. MR 60820, DOI 10.2307/1969790
- George Cooke, Embedding certain complexes up to homotopy type in euclidean space, Ann. of Math. (2) 90 (1969), 144–156. MR 242152, DOI 10.2307/1970685
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886, DOI 10.1515/9781400877492
- Brayton Gray, On the homotopy groups of mapping cones, Proceedings of the Advanced Study Institute on Algebraic Topology (Aarhus Univ., Aarhus, 1970) Various Publ. Ser., No. 13, Mat. Inst., Aarhus Univ., Aarhus, 1970, pp. 104–142. MR 0350728
- P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154–172. MR 68218, DOI 10.1112/jlms/s1-30.2.154
- P. J. Hilton and E. H. Spanier, On the imbeddability of certain complexes in euclidean spaces, Proc. Amer. Math. Soc. 11 (1960), 523–526. MR 124902, DOI 10.1090/S0002-9939-1960-0124902-3
- I. M. James, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374–383. MR 91467, DOI 10.1090/S0002-9939-1957-0091467-4
- I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170–197. MR 73181, DOI 10.2307/2007107
- Norman Levitt, Normal fibrations for complexes, Illinois J. Math. 14 (1970), 385–408. MR 275442
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258, DOI 10.1515/9781400883875
- Hirosi Toda, On iterated suspensions. I, II, J. Math. Kyoto Univ. 5 (1966), 87–142, 209–250. MR 210130, DOI 10.1215/kjm/1250524559 —, p-primary components of homotopy groups. IV, Mem. Coll. Sci. Univ. Kyoto Ser. A 32 (1959).
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- C. T. C. Wall, Classification problems in differential topology. IV. Thickenings, Topology 5 (1966), 73–94. MR 192509, DOI 10.1016/0040-9383(66)90005-X
- J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. (2) 42 (1941), 409–428. MR 4123, DOI 10.2307/1968907
- N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133–152. MR 210075, DOI 10.1307/mmj/1028999711
- Tudor Ganea, Monomorphisms and relative Whitehead products, Topology 10 (1971), 391–403. MR 283800, DOI 10.1016/0040-9383(71)90030-9
- Gerald J. Porter, Higher-order Whitehead products, Topology 3 (1965), 123–135. MR 174054, DOI 10.1016/0040-9383(65)90039-X
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 247 (1979), 177-209
- MSC: Primary 55P99; Secondary 57P10, 57Q35
- DOI: https://doi.org/10.1090/S0002-9947-1979-0517691-0
- MathSciNet review: 517691