Some infinite free boundary problems
HTML articles powered by AMS MathViewer
- by David E. Tepper and Gerald Wildenberg
- Trans. Amer. Math. Soc. 248 (1979), 135-144
- DOI: https://doi.org/10.1090/S0002-9947-1979-0521697-5
- PDF | Request permission
Abstract:
Let $\Gamma$ be the boundary of an unbounded simply connected region $\mathcal {D}$, and let $\mathcal {C}(\Gamma )$ denote the family of all simply connected regions $\Delta \subset \mathcal {D}$ such that $\partial \Delta = \Gamma \cup \gamma$ where $\gamma \cap \Gamma$ contains only the infinite point. For $\Delta \in \mathcal {C}(\Gamma )$ we call $\gamma$ the free boundary of $\Delta$. Given a positive constant $\lambda$, we seek to find a region ${\Delta _\lambda } \in \mathcal {C}(\Gamma )$ with free boundary ${\gamma _\lambda }$ such that there is a bounded harmonic function V in ${\Delta _\lambda }$ with the properties that (i) $V = 0$ on $\Gamma$, (ii) $V = 1$ on $\gamma$, (iii) $\left | {{\text {grad }}V(z)} \right | = \lambda$ for $z \in {\gamma _\lambda }$. We give sufficient conditions for existence and uniqueness of ${\Delta _\lambda }$. We also give quantitative properties of ${\gamma _\lambda }$.References
- Andrew Acker, Heat flow inequalities with applications to heat flow optimization problems, SIAM J. Math. Anal. 8 (1977), no. 4, 604–618. MR 473960, DOI 10.1137/0508048
- Andrew Acker, An isoperimetric inequality involving conformal mapping, Proc. Amer. Math. Soc. 65 (1977), no. 2, 230–234. MR 463412, DOI 10.1090/S0002-9939-1977-0463412-3
- Arne Beurling, An extension of the Riemann mapping theorem, Acta Math. 90 (1953), 117–130. MR 60027, DOI 10.1007/BF02392436 —, Free boundary problems for the Laplace equation, Institute for Advanced Study Seminar, Princeton, N. J., 1957, pp. 248-263.
- David E. Tepper, Free boundary problem, SIAM J. Math. Anal. 5 (1974), 841–846. MR 361132, DOI 10.1137/0505080
- David E. Tepper, On a free boundary problem, the starlike case, SIAM J. Math. Anal. 6 (1975), 503–505. MR 367237, DOI 10.1137/0506045
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 248 (1979), 135-144
- MSC: Primary 31A25
- DOI: https://doi.org/10.1090/S0002-9947-1979-0521697-5
- MathSciNet review: 521697