Duality theory for covariant systems
HTML articles powered by AMS MathViewer
- by Magnus B. Landstad
- Trans. Amer. Math. Soc. 248 (1979), 223-267
- DOI: https://doi.org/10.1090/S0002-9947-1979-0522262-6
- PDF | Request permission
Abstract:
If $(A,\rho ,G)$ is a covariant system over a locally compact group G, i.e. $\rho$ is a homomorphism from G into the group of $^{\ast }$-automorphisms of an operator algebra A, there is a new operator algebra $\mathfrak {A}$ called the covariance algebra associated with $(A,\rho ,G)$. If A is a von Neumann algebra and $\rho$ is $\sigma$-weakly continuous, $\mathfrak {A}$ is defined such that it is a von Neumann algebra. If A is a ${C^{\ast }}$-algebra and $\rho$ is norm-continuous $\mathfrak {A}$ will be a ${C^{\ast }}$-algebra. The following problems are studied in these two different settings: 1. If $\mathfrak {A}$ is a covariance algebra, how do we recover A and $\rho$? 2. When is an operator algebra $\mathfrak {A}$ the covariance algebra for some covariant system over a given locally compact group G?References
- Charles A. Akemann, Gert K. Pedersen, and Jun Tomiyama, Multipliers of $C^*$-algebras, J. Functional Analysis 13 (1973), 277–301. MR 0470685, DOI 10.1016/0022-1236(73)90036-0
- Huzihiro Araki and E. J. Woods, A classification of factors, Publ. Res. Inst. Math. Sci. Ser. A 4 (1968/1969), 51–130. MR 0244773, DOI 10.2977/prims/1195195263
- Robert C. Busby, Double centralizers and extensions of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79–99. MR 225175, DOI 10.1090/S0002-9947-1968-0225175-5
- François Combes, Poids sur une $C^{\ast }$-algèbre, J. Math. Pures Appl. (9) 47 (1968), 57–100 (French). MR 236721
- F. Combes, Poids associé à une algèbre hilbertienne à gauche, Compositio Math. 23 (1971), 49–77 (French). MR 288590
- Alain Connes, Une classification des facteurs de type $\textrm {III}$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115
- A. Derighetti, Some results on the Fourier-Stieltjes algebra of a locally compact group, Comment. Math. Helv. 45 (1970), 219–228. MR 412735, DOI 10.1007/BF02567327 J. Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien, 2nd ed., Gauthier-Villars, Paris, 1969.
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- Sergio Doplicher, Daniel Kastler, and Derek W. Robinson, Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys. 3 (1966), 1–28. MR 205095
- Edward G. Effros and Frank Hahn, Locally compact transformation groups and $C^{\ast }$- algebras, Memoirs of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967. MR 0227310
- Edward G. Effros and E. Christopher Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34. MR 448092, DOI 10.1016/0001-8708(77)90085-8
- Edward G. Effros and E. Christopher Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34. MR 448092, DOI 10.1016/0001-8708(77)90085-8
- John Ernest, The enveloping algebra of a covariant system, Comm. Math. Phys. 17 (1970), 61–74. MR 275800
- John Ernest, A duality theorem for the automorphism group of a covariant system, Comm. Math. Phys. 17 (1970), 75–90. MR 273419
- J. M. G. Fell, An extension of Mackey’s method to Banach $^{\ast }$ algebraic bundles, Memoirs of the American Mathematical Society, No. 90, American Mathematical Society, Providence, R.I., 1969. MR 0259619
- Gert K. Pedersen and Masamichi Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math. 130 (1973), 53–87. MR 412827, DOI 10.1007/BF02392262
- Robert T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. (2) 86 (1967), 138–171. MR 218905, DOI 10.2307/1970364
- Marc A. Rieffel, Induced representations of $C^{\ast }$-algebras, Advances in Math. 13 (1974), 176–257. MR 353003, DOI 10.1016/0001-8708(74)90068-1
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- Masamichi Takesaki, Covariant representations of $C^{\ast }$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273–303. MR 225179, DOI 10.1007/BF02392085
- Masamichi Takesaki, A characterization of group algebras as a converse of Tannaka-Stinespring-Tatsuuma duality theorem, Amer. J. Math. 91 (1969), 529–564. MR 244437, DOI 10.2307/2373525 —, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970.
- Masamichi Takesaki, A liminal crosed product of a uniformly hyperfinite $C^{\ast }$-algebra by a compact Abelian automorphism group, J. Functional Analysis 7 (1971), 140–146. MR 0275184, DOI 10.1016/0022-1236(71)90049-8
- Masamichi Takesaki, Duality and von Neumann algebras, Bull. Amer. Math. Soc. 77 (1971), 553–557. MR 305095, DOI 10.1090/S0002-9904-1971-12752-0
- Masamichi Takesaki, The structure of a von Neumann algebra with a homogeneous periodic state, Acta Math. 131 (1973), 79–121. MR 438148, DOI 10.1007/BF02392037 —, Duality for crossed products and structure of type III von Neumann algebras, Acta Math. 131 (1967), 249-310.
- Jun Tomiyama, Applications of Fubini type theorem to the tensor products of $C^{\ast }$-algebras, Tohoku Math. J. (2) 19 (1967), 213–226. MR 218906, DOI 10.2748/tmj/1178243318
- G. Zeller-Meier, Produits croisés d’une $C^{\ast }$-algèbre par un groupe d’automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101–239 (French). MR 241994
- Uffe Haagerup, Operator valued weights and crossed products, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C^*$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAM, Rome, 1975) Academic Press, London, 1976, pp. 241–251. MR 0442705
- Hiroshi Takai, Dualité dans les produits croisés de $C^{\ast }$-algèbres, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1041–1043 (French). MR 341113
- Hiroshi Takai, On a duality for crossed products of $C^{\ast }$-algebras, J. Functional Analysis 19 (1975), 25–39. MR 0365160, DOI 10.1016/0022-1236(75)90004-x
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 248 (1979), 223-267
- MSC: Primary 46L55
- DOI: https://doi.org/10.1090/S0002-9947-1979-0522262-6
- MathSciNet review: 522262