Nonselfadjoint crossed products (invariant subspaces and maximality)
HTML articles powered by AMS MathViewer
- by Michael McAsey, Paul S. Muhly and Kichi-Suke Saito
- Trans. Amer. Math. Soc. 248 (1979), 381-409
- DOI: https://doi.org/10.1090/S0002-9947-1979-0522266-3
- PDF | Request permission
Abstract:
Let $\mathcal {L}$ be the von Neumann algebra crossed product determined by a finite von Neumann algebra M and a trace preserving automorphism. In this paper we investigate the invariant subspace structure of the subalgebra ${\mathcal {L}_ + }$ of $\mathcal {L}$ consisting of those operators whose spectrum with respect to the dual automorphism group on $\mathcal {L}$ is nonnegative, and we determine conditions under which ${\mathcal {L}_ + }$ is maximal among the $\sigma$-weakly closed subalgebras of $\mathcal {L}$. Our main result asserts that the following statements are equivalent: (1) M is a factor; (2) ${\mathcal {L}_ + }$ is a maximal $\sigma$-weakly closed subalgebra of $\mathcal {L}$; and (3) a version of the Beurling, Lax, Halmos theorem is valid for ${\mathcal {L}_ + }$. In addition, we prove that if $\mathfrak {A}$ is a subdiagonal algebra in a von Neumann algebra $\mathcal {B}$ and if a form of the Beurling, Lax, Halmos theorem holds for $\mathfrak {A}$, then $\mathcal {B}$ is isomorphic to a crossed product of the form $\mathcal {L}$ and $\mathfrak {A}$ is isomorphic to${\mathcal {L}_ + }$.References
- M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply-connected domains, Advances in Math. 19 (1976), no. 1, 106–148. MR 397468, DOI 10.1016/0001-8708(76)90023-2
- William B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578–642. MR 223899, DOI 10.2307/2373237
- William B. Arveson, Operator algebras and measure preserving automorphisms, Acta Math. 118 (1967), 95–109. MR 210866, DOI 10.1007/BF02392478
- William Arveson, On groups of automorphisms of operator algebras, J. Functional Analysis 15 (1974), 217–243. MR 0348518, DOI 10.1016/0022-1236(74)90034-2
- Horst Behncke, Automorphisms of crossed products, Tohoku Math. J. (2) 21 (1969), 580–600. MR 270163, DOI 10.2748/tmj/1178242903
- J. Dixmier, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France 81 (1953), 9–39 (French). MR 59485 —, Les algèbres d’opérateurs dans l’espace Hilbertien, Gauthier-Villars, Paris, 1969.
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- H. Helson, Analyticity on compact abelian groups, Algebras in analysis (Proc. Instructional Conf. and NATO Advanced Study Inst., Birmingham, 1973) Academic Press, London, 1975, pp. 1–62. MR 0427959
- Richard I. Loebl and Paul S. Muhly, Analyticity and flows in von Neumann algebras, J. Functional Analysis 29 (1978), no. 2, 214–252. MR 504460, DOI 10.1016/0022-1236(78)90007-1
- George W. Mackey, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327–335. MR 143874 M. McAsey, Invariant subspaces of nonselfadjoint crossed products, Thesis, Univ. of Iowa, May, 1978.
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- Edward Nelson, Notes on non-commutative integration, J. Functional Analysis 15 (1974), 103–116. MR 0355628, DOI 10.1016/0022-1236(74)90014-7 D. Olesen, On spectral subspaces and their applications to automorphism groups, Physics Theory Seminar 1973-1974, U.E.R. Scientifique de Luminy (Université d’Aix-Marseille II), 1974.
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682 V. A. Rohlin, Selected topics from the metric theory of dynamical systems, Amer. Math. Soc. Transl. (2) 49 (1966), 171-240.
- Marvin Rosenblum, Vectorial Toeplitz operators and the Fejér-Riesz theorem, J. Math. Anal. Appl. 23 (1968), 139–147. MR 227794, DOI 10.1016/0022-247X(68)90122-4
- Kichi-Suke Saito, The Hardy spaces associated with a periodic flow on a von Neumann algebra, Tohoku Math. J. (2) 29 (1977), no. 1, 69–75. MR 440381, DOI 10.2748/tmj/1178240696
- Kichi-Suke Saito, On non-commutative Hardy spaces associated with flows on finite von Neumann algebras, Tôhoku Math. J. 29 (1977), no. 4, 585–595. MR 463932, DOI 10.2748/tmj/1178240495
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401–457. MR 54864, DOI 10.2307/1969729
- T. P. Srinivasan and Ju-kwei Wang, Weak ${}^{\ast }$-Dirichlet algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 216–249. MR 0198282
- Masamichi Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249–310. MR 438149, DOI 10.1007/BF02392041
- G. Zeller-Meier, Produits croisés d’une $C^{\ast }$-algèbre par un groupe d’automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101–239 (French). MR 241994
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 248 (1979), 381-409
- MSC: Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9947-1979-0522266-3
- MathSciNet review: 522266