Balanced Cohen-Macaulay complexes
HTML articles powered by AMS MathViewer
- by Richard P. Stanley
- Trans. Amer. Math. Soc. 249 (1979), 139-157
- DOI: https://doi.org/10.1090/S0002-9947-1979-0526314-6
- PDF | Request permission
Abstract:
A balanced complex of type $({a_1},\ldots ,{a_m})$ is a finite pure simplicial complex $\Delta$ together with an ordered partition $({V_1},\ldots ,{V_m})$ of the vertices of $\Delta$ such that card$({V_i} \cap F) = {a_i}$, for every maximal face F of $\Delta$. If ${\mathbf {b}} = ({b_1},\ldots ,{b_m})$, then define ${f_\textbf {b}}(\Delta )$ to be the number of $F \in \Delta$ satisfying card$({V_i} \cap F) = {b_i}$. The formal properties of the numbers ${f_\textbf {b}}(\Delta )$ are investigated in analogy to the f-vector of an arbitrary simplicial complex. For a special class of balanced complexes known as balanced Cohen-Macaulay complexes, simple techniques from commutative algebra lead to very strong conditions on the numbers${f_\textbf {b}}(\Delta )$. For a certain complex $\Delta (P)$ coming from a poset P, our results are intimately related to properties of the Möbius function of P.References
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- G. F. Clements, More on the generalized Macaulay theorem, Discrete Math. 1 (1971/72), no. 3, 247–255. MR 285406, DOI 10.1016/0012-365X(71)90013-6
- G. F. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory 7 (1969), 230–238. MR 246781
- Gopal Danaraj and Victor Klee, Which spheres are shellable?, Ann. Discrete Math. 2 (1978), 33–52. MR 500687 R. Edwards, An amusing reformulation of the Four Color Problem, Notices Amer. Math. Soc. 24 (1977), A-257-A-258. Abstract #77T-G16.
- T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967), 25–66 (German). MR 221974, DOI 10.1007/BF02020961
- Alain Ghouila-Houri, Caractérisation des graphes non orientés dont on peut orienter les arětes de manière à obtenir le graphe d’une relation d’ordre, C. R. Acad. Sci. Paris 254 (1962), 1370–1371 (French). MR 172275
- P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of interval graphs, Canadian J. Math. 16 (1964), 539–548. MR 175811, DOI 10.4153/CJM-1964-055-5
- Curtis Greene and Daniel J. Kleitman, Proof techniques in the theory of finite sets, Studies in combinatorics, MAA Stud. Math., vol. 17, Math. Assoc. America, Washington, D.C., 1978, pp. 22–79. MR 513002
- Melvin Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975) Lecture Notes in Pure and Appl. Math., Vol. 26, Dekker, New York, 1977, pp. 171–223. MR 0441987
- G. Katona, A theorem of finite sets, Theory of Graphs (Proc. Colloq., Tihany, 1966) Academic Press, New York, 1968, pp. 187–207. MR 0290982
- Joseph B. Kruskal, The number of simplices in a complex, Mathematical optimization techniques, Univ. California Press, Berkeley, Calif., 1963, pp. 251–278. MR 0154827 F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
- P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179–184. MR 283691, DOI 10.1112/S0025579300002850
- James R. Munkres, Topological results in combinatorics, Michigan Math. J. 31 (1984), no. 1, 113–128. MR 736476, DOI 10.1307/mmj/1029002969
- Gerald Allen Reisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math. 21 (1976), no. 1, 30–49. MR 407036, DOI 10.1016/0001-8708(76)90114-6
- Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368 (1964). MR 174487, DOI 10.1007/BF00531932
- Richard P. Stanley, Ordered structures and partitions, Memoirs of the American Mathematical Society, No. 119, American Mathematical Society, Providence, R.I., 1972. MR 0332509
- R. P. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972), 197–217. MR 309815, DOI 10.1007/BF02945028
- Richard P. Stanley, Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194–253. MR 411982, DOI 10.1016/0001-8708(74)90030-9
- Richard P. Stanley, Finite lattices and Jordan-Hölder sets, Algebra Universalis 4 (1974), 361–371. MR 354473, DOI 10.1007/BF02485748
- Richard P. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math. 54 (1975), no. 2, 135–142. MR 458437, DOI 10.1002/sapm1975542135
- Richard P. Stanley, Cohen-Macaulay complexes, Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976) NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., vol. 31, Reidel, Dordrecht-Boston, Mass., 1977, pp. 51–62. MR 0572989
- Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, DOI 10.1016/0001-8708(78)90045-2 J. S. Provan, Decompositions, shellings, and diameters of simplicial complexes and convex polyhedra, Thesis, Cornell University, 1977.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 249 (1979), 139-157
- MSC: Primary 05A99; Secondary 06A10, 13H10, 52A40, 57Q05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0526314-6
- MathSciNet review: 526314