On the zeros of Jacobi polynomials $P_{n}^{(\alpha _{n},\beta _{n})}(x)$
HTML articles powered by AMS MathViewer
- by D. S. Moak, E. B. Saff and R. S. Varga
- Trans. Amer. Math. Soc. 249 (1979), 159-162
- DOI: https://doi.org/10.1090/S0002-9947-1979-0526315-8
- PDF | Request permission
Abstract:
If ${r_n}$ and ${s_n}$ denote, respectively, the smallest and largest zeros of the Jacobi polynomial $P_n^{({\alpha _n},{\beta _n})}$, where ${\alpha _n} > 1$, ${\beta _n} - 1$, and if ${\lim _{n \to \infty }} {\alpha _n}/(2n + {\alpha _n} + {\beta _n} + 1) = a$ and if ${\lim _{n \to \infty }}{\beta _n}/(2n + {\alpha _n} + {\beta _n} + 1) = b$, then the numbers ${r_{a,b}}$ and ${s_{a,b}}$ are determined where \[ \lim \limits _{n \to \infty } {r_{n }} = {r_{a,b}},\lim \limits _{n \to \infty } {s_{n }} = {s_{a,b}}\] . Furthermore, the zeros of $\{ P_n^{({\alpha _n},{\beta _n})}(x)\} _{n = 0}^\infty$ are dense in $[{r_{a,b}},{s_{a,b}}]$.References
- E. B. Saff and R. S. Varga, The sharpness of Lorentz’s theorem on incomplete polynomials, Trans. Amer. Math. Soc. 249 (1979), no. 1, 163–186. MR 526316, DOI 10.1090/S0002-9947-1979-0526316-X G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1975.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 249 (1979), 159-162
- MSC: Primary 33A65
- DOI: https://doi.org/10.1090/S0002-9947-1979-0526315-8
- MathSciNet review: 526315