The sharpness of Lorentz’s theorem on incomplete polynomials
HTML articles powered by AMS MathViewer
- by E. B. Saff and R. S. Varga
- Trans. Amer. Math. Soc. 249 (1979), 163-186
- DOI: https://doi.org/10.1090/S0002-9947-1979-0526316-X
- PDF | Request permission
Abstract:
For any fixed $\theta$ with $0 < \theta < 1$, G. G. Lorentz recently showed that bounded sequences $\{\Sigma _{\theta {n_i} \leqslant k \leqslant {n_i}} {{a_k}(i){{(1 + t)}^k}\} _{i = 1}^\infty }$ of incomplete polynomials on $[ - 1, + 1]$ tend uniformly to zero on closed intervals of $[ - 1,\Delta (\theta ))$, where $2{\theta ^2} - 1 \leqslant \Delta (\theta ) < 2\theta - 1$. In this paper, we show that $\Delta (\theta ) = 2{\theta ^2} - 1$ is best possible, and that the geometric convergence to zero of such sequences on closed intervals $[{t_0},{t_1}]$ can be precisely bounded above as a function of ${t_j}$ and $\theta$. Extensions of these results to the complex plane are also included.References
- L. Ya. Geronimus, Orthogonal polynomials, Consultants Bureau Enterprises, New York, 1971.
- Peter Henrici, Applied and computational complex analysis. Vol. 2, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR 0453984
- G. G. Lorentz, Approximation by incomplete polynomials (problems and results), Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 289–302. MR 0467089
- D. S. Moak, E. B. Saff, and R. S. Varga, On the zeros of Jacobi polynomials $P_{n}^{(\alpha _{n},\beta _{n})}(x)$, Trans. Amer. Math. Soc. 249 (1979), no. 1, 159–162. MR 526315, DOI 10.1090/S0002-9947-1979-0526315-8
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 33, 4th ed., Amer. Math. Soc., Providence, R. I., 1975.
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 249 (1979), 163-186
- MSC: Primary 41A25; Secondary 33A65, 41A60
- DOI: https://doi.org/10.1090/S0002-9947-1979-0526316-X
- MathSciNet review: 526316