Center-by-metabelian groups of prime exponent
HTML articles powered by AMS MathViewer
- by Jay I. Miller
- Trans. Amer. Math. Soc. 249 (1979), 217-224
- DOI: https://doi.org/10.1090/S0002-9947-1979-0526319-5
- PDF | Request permission
Abstract:
We show that a center-by-metabelian group of prime exponent p is nilpotent of class at most p, and this result is best possible. The proof is based on techniques dealing with varieties of groups.References
- Warren Brisley, On varieties of metabelian $p$-groups, and their laws, J. Austral. Math. Soc. 7 (1967), 64–80. MR 0207832
- C. K. Gupta, A faithful matrix representation for certain centre-by-metabelian groups, J. Austral. Math. Soc. 10 (1969), 451–464. MR 0260893
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Heinrich Meier-Wunderli, Über endliche $p$-Gruppen, deren Elemente der Gleichung $x^p=1$ genügen, Comment. Math. Helv. 24 (1950), 18–45 (German). MR 34393, DOI 10.1007/BF02567023
- H. Meier-Wunderli, Metabelsche Gruppen, Comment. Math. Helv. 25 (1951), 1–10 (German). MR 40296, DOI 10.1007/BF02566442
- Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899
- Derek J. S. Robinson, Finiteness conditions and generalized soluble groups. Part 2, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 63, Springer-Verlag, New York-Berlin, 1972. MR 0332990
- Paul M. Weichsel, Regular $p$-groups and varieties, Math. Z. 95 (1967), 223–231. MR 204525, DOI 10.1007/BF01111525
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 249 (1979), 217-224
- MSC: Primary 20E15; Secondary 20F50
- DOI: https://doi.org/10.1090/S0002-9947-1979-0526319-5
- MathSciNet review: 526319