Fourier inversion of invariant integrals on semisimple real Lie groups
HTML articles powered by AMS MathViewer
- by Rebecca A. Herb
- Trans. Amer. Math. Soc. 249 (1979), 281-302
- DOI: https://doi.org/10.1090/S0002-9947-1979-0525674-X
- PDF | Request permission
Abstract:
Let G be a connected, semisimple real Lie group with finite center. Associated with every regular semisimple element g of G is a tempered invariant distribution ${ \Lambda _g}$ given by an orbital integral. This paper gives an inductive formula for computing the Fourier transform of ${ \Lambda _g}$ in terms of the space of tempered invariant eigendistributions of G.References
- Harish-Chandra, A formula for semisimple Lie groups, Amer. J. Math. 79 (1957), 733–760. MR 96138, DOI 10.2307/2372432
- Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023
- Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023
- Harish-Chandra, Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241–318. MR 219665, DOI 10.1007/BF02391779
- Harish-Chandra, Two theorems on semi-simple Lie groups, Ann. of Math. (2) 83 (1966), 74–128. MR 194556, DOI 10.2307/1970472
- Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. MR 219666, DOI 10.1007/BF02392813 R. Herb, Fourier inversion on semisimple Lie groups of real rank two, Ph. D. Thesis, Univ. of Washington, Seattle, Wash., 1974.
- R. A. Herb and P. J. Sally Jr., Singular invariant eigendistributions as characters, Bull. Amer. Math. Soc. 83 (1977), no. 2, 252–254. MR 480875, DOI 10.1090/S0002-9904-1977-14287-0
- Ronald L. Lipsman, On the characters and equivalence of continuous series representations, J. Math. Soc. Japan 23 (1971), 452–480. MR 289718, DOI 10.2969/jmsj/02330452 D. Ragozin and G. Warner, On a method of computing multiplicities in ${L_2}\left ( {\Gamma \,\backslash \,G} \right )$ (to appear).
- Paul J. Sally Jr. and Garth Warner, The Fourier transform on semisimple Lie groups of real rank one, Acta Math. 131 (1973), 1–26. MR 450461, DOI 10.1007/BF02392034
- Wilfried Schmid, On the characters of the discrete series. The Hermitian symmetric case, Invent. Math. 30 (1975), no. 1, 47–144. MR 396854, DOI 10.1007/BF01389847 G. Warner, Harmonic analysis on semisimple Lie groups. I, II, Springer-Verlag, Berlin and New York, 1972.
- Joseph A. Wolf, The action of a real semisimple Lie group on a complex flag manifold. II. Unitary representations on partially holomorphic cohomology spaces, Memoirs of the American Mathematical Society, No. 138, American Mathematical Society, Providence, R.I., 1974. MR 0393350
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 249 (1979), 281-302
- MSC: Primary 22E30
- DOI: https://doi.org/10.1090/S0002-9947-1979-0525674-X
- MathSciNet review: 525674