Nash rings on planar domains
HTML articles powered by AMS MathViewer
- by Gustave A. Efroymson
- Trans. Amer. Math. Soc. 249 (1979), 435-445
- DOI: https://doi.org/10.1090/S0002-9947-1979-0525683-0
- PDF | Request permission
Abstract:
Let D be a semialgebraic domain in ${R^2}$. Let ${N_D}$ denote the Nash ring of algebraic analytic functions on D. Let ${A_D}$ denote the ring of analytic functions on D. The main theorem of this paper implies that if $\mathcal {B}$ is a prime ideal of ${N_D}$, then $\mathcal {B}{A_D}$ is also prime. This result is proved by considering $p\left ( {x, y} \right )$ in $\textbf {R}[{x, y}]$ and showing that$p({x, y})$ can be put into a form so that its factorization in ${N_D}$ is given by looking at its local factorization as a polynomial in y with coefficients which are analytic functions of x. Then for more general domains, a construction using the “complex square root” enables one to reduce to the case already considered.References
- Shreeram Shankar Abhyankar, Local analytic geometry, Pure and Applied Mathematics, Vol. XIV, Academic Press, New York-London, 1964. MR 0175897
- Jacek Bochnak and Jean-Jacques Risler, Analyse différentielle et géométrie analytique. Quelques questions ouvertes, Singularités d’applications différentiables (Sém., Plans-sur-Bex, 1975) Lecture Notes in Math., Vol. 535, Springer, Berlin, 1976, pp. 63–69 (French). MR 0464288
- N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1314, Hermann, Paris, 1965 (French). MR 0260715
- Gustave A. Efroymson, A Nullstellensatz for Nash rings, Pacific J. Math. 54 (1974), 101–112. MR 360576
- John H. Hubbard, On the cohomology of Nash sheaves, Topology 11 (1972), 265–270. MR 295380, DOI 10.1016/0040-9383(72)90013-4
- Tadeusz Mostowski, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 245–266. MR 412180
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 249 (1979), 435-445
- MSC: Primary 14J05; Secondary 13F15, 14G30
- DOI: https://doi.org/10.1090/S0002-9947-1979-0525683-0
- MathSciNet review: 525683