Borel parametrizations
HTML articles powered by AMS MathViewer
- by R. Daniel Mauldin
- Trans. Amer. Math. Soc. 250 (1979), 223-234
- DOI: https://doi.org/10.1090/S0002-9947-1979-0530052-3
- PDF | Request permission
Abstract:
Let X and Y be uncountable Polish spaces and B a Borel subset oi $X \times Y$ such that for each x, ${B_x}$ is uncountable. A Borel parametrization of B is a Borel isomorphism, g, of $X \times E$ onto B where E is a Borel subset of Y such that for each x, $g\left ( {x, \cdot } \right )$ maps E onto ${B_x} = \left \{ {y: \left ( {x, y} \right ) \in B} \right \}$. It is shown that B has a Borel parametrization if and only if B contains a Borel set M such that for each x, ${M_x}$ is a nonempty compact perfect set, or, equivalently, there is an atomless conditional probability distribution, $\mu$, so that for each x, $\mu \left ( {x, {B_x}} \right ) > 0$. It is also shown that if Y is dense-in-itself and ${B_x}$ is not meager, for each x, then B has a Borel parametrization.References
- V. Arsenin, Sur la nature des projections de certains ensembles mesurables $B$, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 403–410 (Russian, with French summary). MR 0005885
- D. Blackwell and C. Ryll-Nardzewski, Non-existence of everywhere proper conditional distributions, Ann. Math. Statist. 34 (1963), 223–225. MR 148097, DOI 10.1214/aoms/1177704259
- Douglas Cenzer and R. Daniel Mauldin, Measurable parametrizations and selections, Trans. Amer. Math. Soc. 245 (1978), 399–408. MR 511418, DOI 10.1090/S0002-9947-1978-0511418-3
- J. R. Choksi, Measurable transformations on compact groups, Trans. Amer. Math. Soc. 184 (1973), 101–124 (1974). MR 338311, DOI 10.1090/S0002-9947-1973-0338311-9
- Kinjiro Kunugui, Sur un problème de M. E. Szpilrajn, Proc. Imp. Acad. Tokyo 16 (1940), 73–78 (French). MR 1819
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- D. G. Larman, Projecting and uniformising Borel sets with ${\scr K}_{\sigma }$-sections. II, Mathematika 20 (1973), 233–246. MR 362271, DOI 10.1112/S0025579300004848 S. Mazurkiewiez and W. Sierpinski, Sur un problème concernant les fonctions continues, Fund. Math. 6 (1924), 161-169.
- John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR 584443, DOI 10.1007/978-1-4684-9339-9
- Jean Saint-Raymond, Boréliens à coupes $K_{\sigma }$, Bull. Soc. Math. France 104 (1976), no. 4, 389–400. MR 433418, DOI 10.24033/bsmf.1835 H. Sarabadhikari, Some uniformization results, Tech. Report Math-Stat., Indian Statistical Institute, June 5, 1975.
- Wacław Sierpiński, Sur la division des types ordinaux, Fund. Math. 35 (1948), 1–12 (French). MR 27815, DOI 10.4064/fm-35-1-1-12
- A. H. Stone, Topology and measure theory, Measure theory (Proc. Conf., Oberwolfach, 1975) Lecture Notes in Math., Vol. 541, Springer, Berlin, 1976, pp. 43–48. MR 0450492
- Hisao Tanaka, Some results in the effective descriptive set theory, Publ. Res. Inst. Math. Sci. Ser. A 3 (1967/1968), 11–52. MR 0228345, DOI 10.2977/prims/1195195654
- Robert Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269–294. MR 363912, DOI 10.4064/fm-82-3-269-294
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 250 (1979), 223-234
- MSC: Primary 54H05; Secondary 04A15, 28A05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0530052-3
- MathSciNet review: 530052