Deforming twist-spun knots
HTML articles powered by AMS MathViewer
- by R. A. Litherland
- Trans. Amer. Math. Soc. 250 (1979), 311-331
- DOI: https://doi.org/10.1090/S0002-9947-1979-0530058-4
- PDF | Request permission
Abstract:
In [15] Zeeman introduced the process of twist-spinning an n-knot to obtain an (n + l)-knot, and proved the remarkable theorem that a twist-spun knot is fibred. In [2] Fox described another deformation which can be applied during the spinning process, and which he called rolling. We show that, provided one combines the rolling with a twist, the resulting knot is again fibred. In fact, this result holds for a larger class of deformations, defined below.References
- Marshall M. Cohen, A general theory of relative regular neighborhoods, Trans. Amer. Math. Soc. 136 (1969), 189β229. MR 248802, DOI 10.1090/S0002-9947-1969-0248802-6
- R. H. Fox, Rolling, Bull. Amer. Math. Soc. 72 (1966), 162β164. MR 184221, DOI 10.1090/S0002-9904-1966-11467-2 C. H. Giften, Homeotopy groups of fibred knots and links, Notices Amer. Math. Soc. 13 (1966), 327. Abstract #632-10.
- Herman Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308β333. MR 146807, DOI 10.1090/S0002-9947-1962-0146807-0
- Deborah Louise Goldsmith, Motions of links in the $3$-sphere, Bull. Amer. Math. Soc. 80 (1974), 62β66. MR 328914, DOI 10.1090/S0002-9904-1974-13353-7
- Deborah L. Goldsmith, Symmetric fibered links, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp.Β 3β23. MR 0380766
- C. McA. Gordon, Some higher-dimensional knots with the same homotopy groups, Quart. J. Math. Oxford Ser. (2) 24 (1973), 411β422. MR 326746, DOI 10.1093/qmath/24.1.411
- Mitsuyoshi Kato, A concordance classification of $\textrm {PL}$ homeomorphisms of $S^{p}\times S^{q}$, Topology 8 (1969), 371β383. MR 256401, DOI 10.1016/0040-9383(69)90023-8
- John Milnor, On the $3$-dimensional Brieskorn manifolds $M(p,q,r)$, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp.Β 175β225. MR 0418127
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Jonathan Simon, Roots and centralizers of peripheral elements in knot groups, Math. Ann. 222 (1976), no.Β 3, 205β209. MR 418079, DOI 10.1007/BF01362577
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56β88. MR 224099, DOI 10.2307/1970594
- C. T. C. Wall, Locally flat $\textrm {PL}$ submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), 5β8. MR 227993, DOI 10.1017/s0305004100040834 E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Γtudes Sci. mimeographed notes, 1963.
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471β495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 250 (1979), 311-331
- MSC: Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9947-1979-0530058-4
- MathSciNet review: 530058