CR submanifolds of a Kaehler manifold. II
HTML articles powered by AMS MathViewer
- by Aurel Bejancu
- Trans. Amer. Math. Soc. 250 (1979), 333-345
- DOI: https://doi.org/10.1090/S0002-9947-1979-0530059-6
- PDF | Request permission
Abstract:
The differential geometry of CR submanifolds of a Kaehler manifold is studied. Theorems on parallel normal sections and on a special type of flatness of the normal connection on a CR submanifold are obtained. Also, the nonexistence of totally umbilical proper CR submanifolds in an elliptic or hyperbolic complex space is proven.References
- Aldo Andreotti and C. Denson Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 299–324. MR 460724
- Aurel Bejancu, $\textrm {CR}$ submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135–142. MR 467630, DOI 10.1090/S0002-9939-1978-0467630-0
- Aurel Bejancu, On integrability conditions on a CR submanifold, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 24 (1978), no. 1, 21–24. MR 518197
- Bang-yen Chen, Geometry of submanifolds, Pure and Applied Mathematics, No. 22, Marcel Dekker, Inc., New York, 1973. MR 0353212
- Bang-yen Chen and Huei Shyong Lue, On normal connection of Kaehler submanifolds, J. Math. Soc. Japan 27 (1975), no. 4, 550–556. MR 400126, DOI 10.2969/jmsj/02740550
- Kentaro Yano and Shigeru Ishihara, The $f$-structure induced on submanifolds of complex and almost complex spaces, K\B{o}dai Math. Sem. Rep. 18 (1966), 120–160. MR 200849 V. Oproiu, Varietá di Cauchy-Riemann, Istituto di Matematica dell Universita di Napoli, Relatione N.20, 1972.
- Ricardo Nirenberg and R. O. Wells Jr., Approximation theorems on differentiable submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1969), 15–35. MR 245834, DOI 10.1090/S0002-9947-1969-0245834-9
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 250 (1979), 333-345
- MSC: Primary 53C40; Secondary 32C05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0530059-6
- MathSciNet review: 530059