Stable measures and central limit theorems in spaces of stable type
Authors:
Michael B. Marcus and Wojbor A. Woyczyński
Journal:
Trans. Amer. Math. Soc. 251 (1979), 71-102
MSC:
Primary 60B12; Secondary 60E07
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531970-2
MathSciNet review:
531970
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let X be a symmetric random variable with values in a quasinormed linear space E. X satisfies the central limit theorem on E with index p, , if
converges weakly to some probability measure on E. Hoffman-Jorgensen and Pisier have shown that Banach spaces of stable type 2 provide a natural environment for the central limit theorem with index
. In this paper we show that, for
, quasi-normed linear spaces of stable type p provide a natural environment for the central limit theorem with index p. A similar result holds also for the weak law of large numbers with index p.
- [1] Anatole Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer. Math. Soc. 13 (1962), 329–334. MR 133857, https://doi.org/10.1090/S0002-9939-1962-0133857-9
- [2] Jean Bretagnolle, Didier Dacunha-Castelle, and Jean-Louis Krivine, Lois stables et espaces 𝐿^{𝑝}, Ann. Inst. H. Poincaré Sect. B (N.S.) 2 (1965/1966), 231–259 (French). MR 0203757
- [3] I. Csiszár and Balram S. Rajput, A convergence of types theorem for probability measures on topological vector spaces with applications to stable laws, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 1, 1–7. MR 420761, https://doi.org/10.1007/BF00533204
- [4] J. L. Doob, Stochastic processes, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. Reprint of the 1953 original; A Wiley-Interscience Publication. MR 1038526
- [5] R. M. Dudley and Marek Kanter, Zero-one laws for stable measures, Proc. Amer. Math. Soc. 45 (1974), 245–252. MR 370675, https://doi.org/10.1090/S0002-9939-1974-0370675-9
- [6] B. Gnedenko, To the theory of the domains of attraction of stable laws, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939), 61–81 (Russian, with English summary). MR 0002042
- [7] J. Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Aarhus Universitet Preprint Series 15 (1972/73), 1-89.
- [8] Jørgen Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186. MR 356155, https://doi.org/10.4064/sm-52-2-159-186
- [9] J. Hoffmann-Jørgensen and G. Pisier, The law of large numbers and the central limit theorem in Banach spaces, Ann. Probability 4 (1976), no. 4, 587–599. MR 423451, https://doi.org/10.1214/aop/1176996029
- [10] Naresh C. Jain and Michael B. Marcus, Integrability of infinite sums of independent vector-valued random variables, Trans. Amer. Math. Soc. 212 (1975), 1–36. MR 385995, https://doi.org/10.1090/S0002-9947-1975-0385995-7
- [11] Michael B. Marcus, Uniform convergence of random Fourier series, Ark. Mat. 13 (1975), 107–122. MR 372994, https://doi.org/10.1007/BF02386200
- [12] Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Co. Raytheon Education Co., Lexington, Mass., 1968. MR 0254888
- [13] M. Kłosowska, The domain of attraction of a non-Gaussian stable distribution in a Hilbert space, Colloq. Math. 32 (1974), 127–136. MR 365646, https://doi.org/10.4064/cm-32-1-127-136
- [14] A. A. Kolmogorov, Bemerkungen zu meiner Arbeit ``Über die Summen zufälliger Grössen", Math. Ann. 102 (1929), 484-488.
- [15] J. L. Krivine, Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. (2) 104 (1976), no. 1, 1–29. MR 407568, https://doi.org/10.2307/1971054
- [16] J. Kuelbs and V. Mandrekar, Harmonic analysis on certain vector spaces, Trans. Amer. Math. Soc. 149 (1970), 213–231. MR 301162, https://doi.org/10.1090/S0002-9947-1970-0301162-2
- [17] J. Kuelbs and V. Mandrekar, Domains of attraction of stable measures on a Hilbert space, Studia Math. 50 (1974), 149–162. MR 345155, https://doi.org/10.4064/sm-50-2-149-162
- [18] S. Kwapień, Sums of independent Banach space valued random variables (after J. Hoffmann-Jørgensen), Séminaire Maurey-Schwartz Année 1972–1973: Espaces 𝐿^{𝑝} et applications radonifiantes, Exp. No. 6, Centre de Math., École Polytech., Paris, 1973, pp. 6. MR 0436246
- [19] Michael B. Marcus, Some new results on central limit theorems for 𝐶(𝑆)-valued random variables, Probability in Banach spaces (Proc. First Internat. Conf., Oberwolfach, 1975), Springer, Berlin, 1976, pp. 167–186. Lecture Notes in Math., Vol. 526. MR 0451329
- [20] Michael B. Marcus and Wojbor A. Woyczyński, Domaine d’attraction normal dans les espaces de type stable 𝑝, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 14, A915–A917 (French, with English summary). MR 451330
- [21]
B. Maurey, Espaces de cotype p,
, Séminaire Maurey-Schwartz 1972/73, Exposé VII.
- [22] Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 443015, https://doi.org/10.4064/sm-58-1-45-90
- [23] D. Mouchtari, Sur l'existence d'une topologie du type de Sazonov sur une espace de Banach, Séminaire Maurey-Schwartz 1975/76, Exposé XVII.
- [24] V. V. Petrov, Summy nezavisimykh sluchaĭ nykh velichin, Izdat. “Nauka”, Moscow, 1972 (Russian). MR 0322927
- [25] G. Pisier, Une propriété du type 𝑝-stable, Séminaire Maurey-Schwartz 1973–1974: Espaces 𝐿^{𝑝}, applications radonifiantes et gèmétrie des espaces de Banach, Exp. No. 8, Centre de Math., École Polytech., Paris, 1974, pp. pp10 pp. (errata, p. E.1) (French). MR 0399811
- [26]
-, Sur les espaces qui ne contiennent pas de
uniformement, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), 991-994.
- [27] E. J. G. Pitman, Some theorems on characteristic functions of probability distributions., Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 393–402. MR 0132568
- [28] E. L. Rvačeva, On domains of attraction of multi-dimensional distributions, Select. Transl. Math. Statist. and Probability, Vol. 2, American Mathematical Society, Providence, R.I., 1962, pp. 183–205. MR 0150795
- [29] A. Tortrat, Lois et (𝜆) dans les espaces vectoriels et lois stables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (1976/77), no. 2, 175–182. MR 428371, https://doi.org/10.1007/BF00536779
- [30] K. Urbanik and W. A. Woyczyński, A random integral and Orlicz spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 161–169 (English, with Russian summary). MR 215329
- [31] W. A. Woyczyński, Geometry and martingales in Banach spaces, Probability—Winter School (Proc. Fourth Winter School, Karpacz, 1975), Springer, Berlin, 1975, pp. 229–275. Lecture Notes in Math., Vol. 472. MR 0394131
- [32] W. A. Woyczyński, Weak convergence to a Gaussian measure of martingales in Banach spaces, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 319–331. MR 0482990
- [33] K. Yosida, Functional analysis, Springer-Verlag, New York, 1965.
- [34] Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- [35] Stefan Rolewicz, Metric linear spaces, 2nd ed., PWN—Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984. MR 802450
Retrieve articles in Transactions of the American Mathematical Society with MSC: 60B12, 60E07
Retrieve articles in all journals with MSC: 60B12, 60E07
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531970-2
Keywords:
Stable measures,
domains of attraction,
weak law of large numbers,
random integral,
quasi-normed space,
space of stable type p
Article copyright:
© Copyright 1979
American Mathematical Society