On -manifolds that have finite fundamental group and contain Klein bottles
Author:
J. H. Rubinstein
Journal:
Trans. Amer. Math. Soc. 251 (1979), 129-137
MSC:
Primary 57N10
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531972-6
MathSciNet review:
531972
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The closed irreducible 3-manifolds with finite fundamental group and containing an embedded Klein bottle can be identified with certain Seifert fibre spaces. We calculate the isotopy classes of homeomorphisms of such 3-manifolds. Also we prove that a free involution acting on a manifold of this type, gives as quotient either a lens space or a manifold in this class. As a corollary it follows that a free action of or a generalized quaternionic group on
is equivalent to an orthogonal action.
- [1] Glen E. Bredon and John W. Wood, Non-orientable surfaces in orientable 3-manifolds, Invent. Math. 7 (1969), 83–110. MR 246312, https://doi.org/10.1007/BF01389793
- [2] D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83–107. MR 214087, https://doi.org/10.1007/BF02392203
- [3] G. R. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math. (2) 72 (1960), 603–611. MR 116343, https://doi.org/10.2307/1970232
- [4] T. M. Price, Homeomorphisms of quaternion space and projective planes in four space, J. Austral. Math. Soc. Ser. A 23 (1977), no. 1, 112–128. MR 436151, https://doi.org/10.1017/s1446788700017407
- [5] P. M. Rice, Free actions of 𝑍₄ on 𝑆³, Duke Math. J. 36 (1969), 749–751. MR 248814
- [6] Gerhard X. Ritter, Free 𝑍₈ actions on 𝑆³, Trans. Amer. Math. Soc. 181 (1973), 195–212. MR 321078, https://doi.org/10.1090/S0002-9947-1973-0321078-8
- [7] H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, https://doi.org/10.1007/BF02398271
- [8] John Stallings, On fibering certain 3-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95–100. MR 0158375
- [9] Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, https://doi.org/10.2307/1970594
- [10] Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001
- [11] J. H. Rubinstein, Free actions of some finite groups on 𝑆³. I, Math. Ann. 240 (1979), no. 2, 165–175. MR 524664, https://doi.org/10.1007/BF01364631
- [12] John Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR 0415619
- [13] John Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12–19. MR 121796, https://doi.org/10.2307/1970146
Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N10
Retrieve articles in all journals with MSC: 57N10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531972-6
Keywords:
Seifert fibre space,
isotopy class of homeomorphisms,
free group action
Article copyright:
© Copyright 1979
American Mathematical Society