On $3$-manifolds that have finite fundamental group and contain Klein bottles
HTML articles powered by AMS MathViewer
- by J. H. Rubinstein
- Trans. Amer. Math. Soc. 251 (1979), 129-137
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531972-6
- PDF | Request permission
Abstract:
The closed irreducible 3-manifolds with finite fundamental group and containing an embedded Klein bottle can be identified with certain Seifert fibre spaces. We calculate the isotopy classes of homeomorphisms of such 3-manifolds. Also we prove that a free involution acting on a manifold of this type, gives as quotient either a lens space or a manifold in this class. As a corollary it follows that a free action of ${Z_8}$ or a generalized quaternionic group on ${S^3}$ is equivalent to an orthogonal action.References
- Glen E. Bredon and John W. Wood, Non-orientable surfaces in orientable $3$-manifolds, Invent. Math. 7 (1969), 83β110. MR 246312, DOI 10.1007/BF01389793
- D. B. A. Epstein, Curves on $2$-manifolds and isotopies, Acta Math. 115 (1966), 83β107. MR 214087, DOI 10.1007/BF02392203
- G. R. Livesay, Fixed point free involutions on the $3$-sphere, Ann. of Math. (2) 72 (1960), 603β611. MR 116343, DOI 10.2307/1970232
- T. M. Price, Homeomorphisms of quaternion space and projective planes in four space, J. Austral. Math. Soc. Ser. A 23 (1977), no.Β 1, 112β128. MR 436151, DOI 10.1017/s1446788700017407
- P. M. Rice, Free actions of $Z_{4}$ on $S^{3}$, Duke Math. J. 36 (1969), 749β751. MR 248814
- Gerhard X. Ritter, Free $Z_{8}$ actions on $S^{3}$, Trans. Amer. Math. Soc. 181 (1973), 195β212. MR 321078, DOI 10.1090/S0002-9947-1973-0321078-8
- H. Seifert, Topologie Dreidimensionaler Gefaserter RΓ€ume, Acta Math. 60 (1933), no.Β 1, 147β238 (German). MR 1555366, DOI 10.1007/BF02398271
- John Stallings, On fibering certain $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.Β 95β100. MR 0158375
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56β88. MR 224099, DOI 10.2307/1970594
- Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001, DOI 10.1007/BFb0060329
- J. H. Rubinstein, Free actions of some finite groups on $S^{3}$. I, Math. Ann. 240 (1979), no.Β 2, 165β175. MR 524664, DOI 10.1007/BF01364631
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619
- John Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12β19. MR 121796, DOI 10.2307/1970146
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 251 (1979), 129-137
- MSC: Primary 57N10
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531972-6
- MathSciNet review: 531972