The transfer and compact Lie groups
HTML articles powered by AMS MathViewer
- by Mark Feshbach
- Trans. Amer. Math. Soc. 251 (1979), 139-169
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531973-8
- PDF | Request permission
Abstract:
Let G be a compact Lie group with H and K arbitrary closed subgroups. Let BG, BH, BK be l-universal classifying spaces, with $\rho (H,G):BH \to BG$ the natural projection. Then transfer homomorphisms $T(H,G):h(BH) \to h(BG)$ are defined for h an arbitrary cohomology theory. One of the basic properties of the transfer for finite coverings is a double coset formula. This paper proves a double coset theorem in the above more general context, expressing ${\rho ^{\ast }}(K,G) \circ T(H,G)$ as a sum of other compositions. The main theorems were announced in the Bulletin of the American Mathematical Society in May 1977.References
- J. C. Becker, Characteristic classes and $K$-theory, Algebraic and geometrical methods in topology (Conf. Topological Methods in Algebraic Topology, State Univ. New York, Binghamton, N.Y., 1973), Lecture Notes in Math., Vol. 428, Springer, Berlin, 1974, pp. 132–143. MR 0377877
- J. C. Becker and D. H. Gottlieb, Transfer maps for fibrations and duality, Compositio Math. 33 (1976), no. 2, 107–133. MR 436137
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- G. Brumfiel and I. Madsen, Evaluation of the transfer and the universal surgery classes, Invent. Math. 32 (1976), no. 2, 133–169. MR 413099, DOI 10.1007/BF01389959
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Albrecht Dold, The fixed point transfer of fibre-preserving maps, Math. Z. 148 (1976), no. 3, 215–244. MR 433440, DOI 10.1007/BF01214520
- Albrecht Dold, Transfert des points fixes d’une famille continue d’applications, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1291–1293 (French). MR 348734
- Albrecht Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1–8. MR 193634, DOI 10.1016/0040-9383(65)90044-3
- Sören Illman, Equivariant singular homology and cohomology for actions of compact Lie groups, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Lecture Notes in Math., Vol. 298, Springer, Berlin, 1972, pp. 403–415. MR 0377858
- Richard S. Palais, The classification of $G$-spaces, Mem. Amer. Math. Soc. 36 (1960), iv+72. MR 0177401
- C. T. Yang, The triangulability of the orbit space of a differentiable transformation group, Bull. Amer. Math. Soc. 69 (1963), 405–408. MR 146291, DOI 10.1090/S0002-9904-1963-10947-7
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 251 (1979), 139-169
- MSC: Primary 57R10; Secondary 55M20
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531973-8
- MathSciNet review: 531973