## On parabolic measures and subparabolic functions

HTML articles powered by AMS MathViewer

- by Jang Mei G. Wu
- Trans. Amer. Math. Soc.
**251**(1979), 171-185 - DOI: https://doi.org/10.1090/S0002-9947-1979-0531974-X
- PDF | Request permission

Erratum: Trans. Amer. Math. Soc.

**259**(1980), 636-636.

## Abstract:

Let*D*be a domain in $R_x^n \times R_t^1$ and ${\partial _p}D$ be the parabolic boundary of

*D*. Suppose ${\partial _p}D$ is composed of two parts

*B*and

*S: B*is given locally by $t = \tau$ and

*S*is given locally by the graph of ${x_n} = f({x_1},{x_2}, \cdots ,{x_{n - 1}},t)$ where

*f*is Lip 1 with respect to the local space variables and Lip $\tfrac {1} {2}$ with respect to the universal time variable. Let $\sigma$ be the

*n*-dimensional Hausdorff measure in ${R^{n + 1}}$ and $\sigma ’$ be the $(n - 1)$-dimensional Hausdorff measure in ${\textbf {R}^n}$. And let $dm(E) = d\sigma (E \cap B) + d{\sigma ’} \times dt(E \cap S)$ for $E \subseteq {\partial _p}D$. We study (i) the relation between the parabolic measure on ${\partial _p}D$ and the measure

*dm*on ${\partial _p}D$ and (ii) the boundary behavior of subparabolic functions on

*D*.

## References

- A. S. Besicovitch,
*A general form of the covering principle and relative differentiation of additive functions. II*, Proc. Cambridge Philos. Soc.**42**(1946), 1–10. MR**14414**, DOI 10.1017/s0305004100022660 - Björn E. J. Dahlberg,
*Estimates of harmonic measure*, Arch. Rational Mech. Anal.**65**(1977), no. 3, 275–288. MR**466593**, DOI 10.1007/BF00280445 - Björn E. J. Dahlberg,
*On the existence of radial boundary values for functions subharmonic in a Lipschitz domain*, Indiana Univ. Math. J.**27**(1978), no. 3, 515–526. MR**486569**, DOI 10.1512/iumj.1978.27.27035 - J. L. Doob,
*A probability approach to the heat equation*, Trans. Amer. Math. Soc.**80**(1955), 216–280. MR**79376**, DOI 10.1090/S0002-9947-1955-0079376-0
N. Dunford and J. T. Schwartz, - Avner Friedman,
*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836** - Richard A. Hunt and Richard L. Wheeden,
*On the boundary values of harmonic functions*, Trans. Amer. Math. Soc.**132**(1968), 307–322. MR**226044**, DOI 10.1090/S0002-9947-1968-0226044-7 - John T. Kemper,
*Kernel functions and parabolic limits for the heat equation*, Bull. Amer. Math. Soc.**76**(1970), 1319–1320. MR**264246**, DOI 10.1090/S0002-9904-1970-12658-1 - John T. Kemper,
*Temperatures in several variables: Kernel functions, representations, and parabolic boundary values*, Trans. Amer. Math. Soc.**167**(1972), 243–262. MR**294903**, DOI 10.1090/S0002-9947-1972-0294903-6
J. E. Littlewood, - Jürgen Moser,
*A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math.**17**(1964), 101–134. MR**159139**, DOI 10.1002/cpa.3160170106 - I. Petrowsky,
*Zur ersten Randwertaufgabe der Wärmeleitungsgleichung*, Compositio Math.**1**(1935), 383–419 (German). MR**1556900** - P. J. Rippon,
*On the boundary behaviour of Green potentials*, Proc. London Math. Soc. (3)**38**(1979), no. 3, 461–480. MR**532982**, DOI 10.1112/plms/s3-38.3.461 - N. A. Watson,
*Green functions, potentials, and the Dirichlet problem for the heat equation*, Proc. London Math. Soc. (3)**33**(1976), no. 2, 251–298. MR**425145**, DOI 10.1112/plms/s3-33.2.251
J.-M. Wu, - Jang-Mei Gloria Wu,
*On functions subharmonic in a Lipschitz domain*, Proc. Amer. Math. Soc.**68**(1978), no. 3, 309–316. MR**470234**, DOI 10.1090/S0002-9939-1978-0470234-7

*Linear operators*. I, Wiley-Interscience, New York, 1957.

*On functions subharmonic in a circle*. II, Proc. London Math. Soc. (2)

**28**(1928), 383-394.

*Boundary limits of Green’s potentials along curves*, Studia Math.

**60**(1976), 137-144.

## Bibliographic Information

- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**251**(1979), 171-185 - MSC: Primary 31C99; Secondary 31D05, 35K99
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531974-X
- MathSciNet review: 531974