On parabolic measures and subparabolic functions
HTML articles powered by AMS MathViewer
- by Jang Mei G. Wu
- Trans. Amer. Math. Soc. 251 (1979), 171-185
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531974-X
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 259 (1980), 636-636.
Abstract:
Let D be a domain in $R_x^n \times R_t^1$ and ${\partial _p}D$ be the parabolic boundary of D. Suppose ${\partial _p}D$ is composed of two parts B and S: B is given locally by $t = \tau$ and S is given locally by the graph of ${x_n} = f({x_1},{x_2}, \cdots ,{x_{n - 1}},t)$ where f is Lip 1 with respect to the local space variables and Lip $\tfrac {1} {2}$ with respect to the universal time variable. Let $\sigma$ be the n-dimensional Hausdorff measure in ${R^{n + 1}}$ and $\sigma ’$ be the $(n - 1)$-dimensional Hausdorff measure in ${\textbf {R}^n}$. And let $dm(E) = d\sigma (E \cap B) + d{\sigma ’} \times dt(E \cap S)$ for $E \subseteq {\partial _p}D$. We study (i) the relation between the parabolic measure on ${\partial _p}D$ and the measure dm on ${\partial _p}D$ and (ii) the boundary behavior of subparabolic functions on D.References
- A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions. II, Proc. Cambridge Philos. Soc. 42 (1946), 1–10. MR 14414, DOI 10.1017/s0305004100022660
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- Björn E. J. Dahlberg, On the existence of radial boundary values for functions subharmonic in a Lipschitz domain, Indiana Univ. Math. J. 27 (1978), no. 3, 515–526. MR 486569, DOI 10.1512/iumj.1978.27.27035
- J. L. Doob, A probability approach to the heat equation, Trans. Amer. Math. Soc. 80 (1955), 216–280. MR 79376, DOI 10.1090/S0002-9947-1955-0079376-0 N. Dunford and J. T. Schwartz, Linear operators. I, Wiley-Interscience, New York, 1957.
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Richard A. Hunt and Richard L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 132 (1968), 307–322. MR 226044, DOI 10.1090/S0002-9947-1968-0226044-7
- John T. Kemper, Kernel functions and parabolic limits for the heat equation, Bull. Amer. Math. Soc. 76 (1970), 1319–1320. MR 264246, DOI 10.1090/S0002-9904-1970-12658-1
- John T. Kemper, Temperatures in several variables: Kernel functions, representations, and parabolic boundary values, Trans. Amer. Math. Soc. 167 (1972), 243–262. MR 294903, DOI 10.1090/S0002-9947-1972-0294903-6 J. E. Littlewood, On functions subharmonic in a circle. II, Proc. London Math. Soc. (2) 28 (1928), 383-394.
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- I. Petrowsky, Zur ersten Randwertaufgabe der Wärmeleitungsgleichung, Compositio Math. 1 (1935), 383–419 (German). MR 1556900
- P. J. Rippon, On the boundary behaviour of Green potentials, Proc. London Math. Soc. (3) 38 (1979), no. 3, 461–480. MR 532982, DOI 10.1112/plms/s3-38.3.461
- N. A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation, Proc. London Math. Soc. (3) 33 (1976), no. 2, 251–298. MR 425145, DOI 10.1112/plms/s3-33.2.251 J.-M. Wu, Boundary limits of Green’s potentials along curves, Studia Math. 60 (1976), 137-144.
- Jang-Mei Gloria Wu, On functions subharmonic in a Lipschitz domain, Proc. Amer. Math. Soc. 68 (1978), no. 3, 309–316. MR 470234, DOI 10.1090/S0002-9939-1978-0470234-7
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 251 (1979), 171-185
- MSC: Primary 31C99; Secondary 31D05, 35K99
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531974-X
- MathSciNet review: 531974