Complete characterization of functions which act, via superposition, on Sobolev spaces
HTML articles powered by AMS MathViewer
- by Moshe Marcus and Victor J. Mizel
- Trans. Amer. Math. Soc. 251 (1979), 187-218
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531975-1
- PDF | Request permission
Abstract:
Given a domain $\Omega \subset {R_N}$ and a Borel function $h: {R_m} \to R$, conditions on h are sought ensuring that for every m-tuple of functions ${u_i}$ belonging to the first order Sobolev space ${W^{1,p}}(\Omega )$, the function $h({u_1}( \cdot ), \ldots ,{u_m}( \cdot ))$ will belong to a first order Sobolev space ${W^{1,r}}(\Omega )$, $1 \leqslant r \leqslant p < \infty$.In this paper conditions are found which are both necessary and sufficient in order that h have the above property. This result is based on a characterization obtained here for those Borel functions $g: {R_m} \times {({R_N})_m} \to R$ satisfying the requirement that for every m-tuple of functions ${u_i} \in {W^{1,p}}(\Omega )$ the function $g({u_1}( \cdot ), \ldots ,{u_m}( \cdot ),\nabla {u_1}( \cdot ), \ldots ,\nabla {u_m}( \cdot ))$ belongs to ${L^r}(\Omega )$. A needed result on the measurability of the set of ${R_k}$-Lebesgue points of a function on ${R_N}$ is presented in an appendix.References
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Emilio Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137 (Italian). MR 102740
- Jacques L. Lions, Problèmes aux limites dans les équations aux dérivées partielles, Séminaire de Mathématiques Supérieures, No. 1 (Été, vol. 1962, Les Presses de l’Université de Montréal, Montreal, Que., 1965 (French). Deuxième édition. MR 0251372
- M. Marcus and V. J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 338765, DOI 10.1007/BF00251378
- M. Marcus and V. J. Mizel, Nemitsky operators on Sobolev spaces, Arch. Rational Mech. Anal. 51 (1973), 347–370. MR 348480, DOI 10.1007/BF00263040 —, Every superposition operator which maps one Sobolev space into another is continuous, J. Functional Anal. (to appear). C. B. Morrey, Multiple integrals in the calculus of variations, Die Grundlehren der Math. Wissenschaften, Band 130, Springer-Verlag, Berlin and New York, 1964.
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
- Guido Stampacchia, Èquations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures, No. 16 (Été, vol. 1965, Les Presses de l’Université de Montréal, Montreal, Que., 1966 (French). MR 0251373
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 251 (1979), 187-218
- MSC: Primary 46E35; Secondary 47H15
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531975-1
- MathSciNet review: 531975