A pointwise ergodic theorem for the group of rational rotations
Authors:
Lester E. Dubins and Jim Pitman
Journal:
Trans. Amer. Math. Soc. 251 (1979), 299-308
MSC:
Primary 60G42; Secondary 28D99
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531981-7
MathSciNet review:
531981
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let f be a bounded, measurable function defined on the multiplicative group of complex numbers of absolute value 1, and define
![]() | (![]() |
where







- [1] R. C. Baker, Riemann sums and Lebesgue integrals, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 106, 191–198. MR 409395, https://doi.org/10.1093/qmath/27.2.191
- [2] R. Cairoli, Une inégalité pour martingales à indices multiples et ses applications, Séminaire de Probabilités, IV (Univ. Strasbourg, 1968/69) Lecture Notes in Mathematics, Vol. 124. Springer, Berlin, 1970, pp. 1–27 (French). MR 0270424
- [3] R. Cairoli and John B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111–183. MR 420845, https://doi.org/10.1007/BF02392100
- [4] Claude Dellacherie and Paul-André Meyer, Probabilités et potentiel, Hermann, Paris, 1975 (French). Chapitres I à IV; Édition entièrement refondue; Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV; Actualités Scientifiques et Industrielles, No. 1372. MR 0488194
- [5] Jean Dieudonné, Sur un théorème de Jessen, Fund. Math. 37 (1950), 242–248 (French). MR 43176, https://doi.org/10.4064/fm-37-1-242-248
- [6] Lester E. Dubins, Measurable tail disintegrations of the Haar integral are purely finitely additive, Proc. Amer. Math. Soc. 62 (1976), no. 1, 34–36 (1977). MR 425071, https://doi.org/10.1090/S0002-9939-1977-0425071-5
- [7] Nelson Dunford, An individual ergodic theorem for non-commutative transformations, Acta Sci. Math. (Szeged) 14 (1951), 1–4. MR 42074
- [8] R. F. Gundy and N. Th. Varopoulos, A martingale that occurs in harmonic analysis, Ark. Mat. 14 (1976), no. 2, 179–187. MR 448539, https://doi.org/10.1007/BF02385833
- [9] Allan Gut, Convergence of reversed martingales with multidimensional indices, Duke Math. J. 43 (1976), no. 2, 269–275. MR 407969
- [10] Edwin Hewitt and Leonard J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470–501. MR 76206, https://doi.org/10.1090/S0002-9947-1955-0076206-8
- [11] B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. of Math. (2) 35 (1934), no. 2, 248–251. MR 1503159, https://doi.org/10.2307/1968429
- [12] Marina v. N. Whitman, John von Neumann: a personal view, The legacy of John von Neumann (Hempstead, NY, 1988) Proc. Sympos. Pure Math., vol. 50, Amer. Math. Soc., Providence, RI, 1990, pp. 1–4. MR 1067744, https://doi.org/10.1090/pspum/050/1067744
- [13] J. Neveu, Discrete-parameter martingales, Revised edition, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Translated from the French by T. P. Speed; North-Holland Mathematical Library, Vol. 10. MR 0402915
- [14] L. Pontriagin (1946), Topological groups, Princeton Univ. Press, Princeton, N.J.
- [15] Walter Rudin, An arithmetic property of Riemann sums, Proc. Amer. Math. Soc. 15 (1964), 321–324. MR 159918, https://doi.org/10.1090/S0002-9939-1964-0159918-8
- [16] Pranab Kumar Sen, Almost sure convergence of generalized 𝑈-statistics, Ann. Probability 5 (1977), no. 2, 287–290. MR 436444, https://doi.org/10.1214/aop/1176995853
- [17] R. T. Smythe, Strong laws of large numbers for 𝑟-dimensional arrays of random variables, Ann. Probability 1 (1973), no. 1, 164–170. MR 346881, https://doi.org/10.1214/aop/1176997031
- [18] R. T. Smythe, Sums of independent random variables on partially ordered sets, Ann. Probability 2 (1974), 906–917. MR 358973, https://doi.org/10.1214/aop/1176996556
- [19] A. Zygmund, An individual ergodic theorem for non-commutative transformations, Acta Sci. Math. (Szeged) 14 (1951), 103–110. MR 45948
Retrieve articles in Transactions of the American Mathematical Society with MSC: 60G42, 28D99
Retrieve articles in all journals with MSC: 60G42, 28D99
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531981-7
Keywords:
Martingales,
ergodic theory,
permutable groups,
conditional independence
Article copyright:
© Copyright 1979
American Mathematical Society