An axiom for nonseparable Borel theory
HTML articles powered by AMS MathViewer
- by William G. Fleissner PDF
- Trans. Amer. Math. Soc. 251 (1979), 309-328 Request permission
Abstract:
Kuratowski asked whether the Lebesgue-Hausdorff theorem held for metrizable spaces. A. Stone asked whether a Borel isomorphism between metrizable spaces must be a generalized homeomorphism. The existence of a Q set refutes the generalized Lebesgue-Hausdorff theorem. In this paper we discuss the consequences of the axiom of the title, among which are âyesâ answers to both Kuratowskiâs and Stoneâs questions. The axiom states that a point finite analytic additive family is $\sigma$ discretely decomposable. We show that this axiom is valid in the model constructed by collapsing a supercompact cardinal to ${\omega _2}$ using LĂ©vy forcing. Our proof displays relationships between $\sigma$ discretely decomposable families, analytic additive families and d families.References
-
R. Baire, Leçons sur les fonctions discontinues, Gauthier-Villars, Paris, 1905.
S. Banach, Ăber analytisch darstellbare Operationen in abstrakten Raumen, Fund. Math. 17 (1931), 283-295.
- James E. Baumgartner, A new class of order types, Ann. Math. Logic 9 (1976), no. 3, 187â222. MR 416925, DOI 10.1016/0003-4843(76)90001-2
- William G. Fleissner, Separation properties in Moore spaces, Fund. Math. 98 (1978), no. 3, 279â286. MR 478111, DOI 10.4064/fm-98-3-279-286
- R. W. Hansell, Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161 (1971), 145â169. MR 288228, DOI 10.1090/S0002-9947-1971-0288228-1
- R. W. Hansell, On Borel mappings and Baire functions, Trans. Amer. Math. Soc. 194 (1974), 195â211. MR 362270, DOI 10.1090/S0002-9947-1974-0362270-7 F. Hausdorff, Mengenlehre, de Gruyter, Berlin, 1937; English translation, Chelsea, New York, 1957. MR 19, 11. M. Lavrentiev, Sur la recherche des ensembles homĂ©omorphes, C. R. Acad. Sci. Paris 178 (1924), 187. H. Lebesgue, Sur les fonctions reprĂ©sentables anatytiquement, J. Math. Pures Appl. 1 (1905), 139-216.
- J. Kaniewski and R. Pol, Borel-measurable selectors for compact-valued mappings in the non-separable case, Bull. Acad. Polon. Sci. SĂ©r. Sci. Math. Astronom. Phys. 23 (1975), no. 10, 1043â1050 (English, with Russian summary). MR 410657 K. Kuratowski, Quelques problĂšmes concernant espaces mĂ©triques non-sĂ©parables, Fund. Math. 25 (1935), 532-545.
- Gustave Choquet, Topology, Pure and Applied Mathematics, Vol. XIX, Academic Press, New York-London, 1966. Translated from the French by Amiel Feinstein. MR 0193605
- D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), no. 2, 143â178. MR 270904, DOI 10.1016/0003-4843(70)90009-4
- E. Michael and I. Namioka, Barely continuous functions, Bull. Acad. Polon. Sci. SĂ©r. Sci. Math. Astronom. Phys. 24 (1976), no. 10, 889â892 (English, with Russian summary). MR 431092
- Arnold W. Miller, On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), no. 3, 233â267. MR 548475, DOI 10.1016/0003-4843(79)90003-2
- E. C. Milner and S. Shelah, Some theorems on transversals, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. ErdĆs on his 60th birthday), Vol. III, Colloq. Math. Soc. JĂĄnos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 1115â1126. MR 0376358 J. Nagata, Modern general topology, North Holland, Amsterdam, 1968.
- R. Pol, Note on decompositions of metrizable spaces. I, Fund. Math. 95 (1977), no. 2, 95â103. MR 433371, DOI 10.4064/fm-95-2-95-103
- Roman Pol, Note on decompositions of metrizable spaces. II, Fund. Math. 100 (1978), no. 2, 129â143. MR 494011, DOI 10.4064/fm-100-2-129-143
- David Preiss, Completely additive disjoint system of Baire sets is of bounded class, Comment. Math. Univ. Carolinae 15 (1974), 341â344. MR 346116
- Robert M. Solovay, William N. Reinhardt, and Akihiro Kanamori, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), no. 1, 73â116. MR 482431, DOI 10.1016/0003-4843(78)90031-1
- Saharon Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Israel J. Math. 21 (1975), no. 4, 319â349. MR 389579, DOI 10.1007/BF02757993
- R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslinâs problem, Ann. of Math. (2) 94 (1971), 201â245. MR 294139, DOI 10.2307/1970860
Additional Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 251 (1979), 309-328
- MSC: Primary 03E15; Secondary 03E35, 03E55, 04A15, 26A21
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531982-9
- MathSciNet review: 531982