Jordan rings with nonzero socle
HTML articles powered by AMS MathViewer
- by J. Marshall Osborn and M. L. Racine
- Trans. Amer. Math. Soc. 251 (1979), 375-387
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531985-4
- PDF | Request permission
Abstract:
Let $\mathcal {J}$ be a nondegenerate Jordan algebra over a commutative associative ring $\Phi$ containing $\tfrac {1}{2}$. Defining the socle $\mathcal {G}$ of $\mathcal {J}$ to be the sum of all minimal inner ideals of $\mathcal {J}$, we prove that $\mathcal {G}$ is the direct sum of simple ideals of $\mathcal {J}$. Our main result is that if $\mathcal {J}$ is prime with nonzero socle, then either (i) $\mathcal {J}$ is simple unital and satisfies DCC on principal inner ideals, (ii) $\mathcal {J}$ is isomorphic to a Jordan subalgebra $\mathcal {J}’$ of the plus algebra ${A^ + }$ of a primitive associative algebra A with nonzero socle S, and $\mathcal {J}’$ contains ${S^ + }$, or (iii) $\mathcal {J}$ is isomorphic to a Jordan subalgebra $\mathcal {J}''$ of the Jordan algebra of all symmetric elements H of a. primitive associative algebra A with nonzero socle S, and $\mathcal {J}''$ contains $H \cap S$. Conversely, any algebra of type (i), (ii), or (iii) is a prime Jordan algebra with nonzero socle. We also prove that if $\mathcal {J}$ is simple then $\mathcal {J}$ contains a completely primitive idempotent if and only if either $\mathcal {J}$ is unital and satisfies DCC on principal inner ideals or $\mathcal {J}$ is isomorphic to the Jordan algebra of symmetric elements of a $*$-simple associative algebra A with involution $*$ containing a minimal one-sided ideal.References
- T. S. Erickson and S. Montgomery, The prime radical in special Jordan rings, Trans. Amer. Math. Soc. 156 (1971), 155–164. MR 274543, DOI 10.1090/S0002-9947-1971-0274543-4
- I. N. Herstein, Rings with involution, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1976. MR 0442017
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099, DOI 10.1090/coll/039
- N. Jacobson, Lectures on quadratic Jordan algebras, Tata Institute of Fundamental Research Lectures on Mathematics, No. 45, Tata Institute of Fundamental Research, Bombay, 1969. MR 0325715
- N. Jacobson and C. E. Rickart, Homomorphisms of Jordan rings of self-adjoint elements, Trans. Amer. Math. Soc. 72 (1952), 310–322. MR 46346, DOI 10.1090/S0002-9947-1952-0046346-5
- J. A. Loustau, The structure of algebraic Jordan algebras without nonzero nilpotent elements, Comm. Algebra 4 (1976), no. 11, 1045–1070. MR 442041, DOI 10.1080/00927877608822150
- Kevin McCrimmon, Jordan algebras with interconnected idempotents, Proc. Amer. Math. Soc. 19 (1968), 1327–1336. MR 231875, DOI 10.1090/S0002-9939-1968-0231875-9
- Kevin McCrimmon, The Freudenthal-Springer-Tits constructions revisited, Trans. Amer. Math. Soc. 148 (1970), 293–314. MR 271181, DOI 10.1090/S0002-9947-1970-0271181-3
- Kevin McCrimmon, Inner ideals in quadratic Jordan algebras, Trans. Amer. Math. Soc. 159 (1971), 445–468. MR 279145, DOI 10.1090/S0002-9947-1971-0279145-1
- Kevin McCrimmon, Speciality and reflexivity of quadratic Jordan algebras, Comm. Algebra 5 (1977), no. 9, 903–935. MR 450355, DOI 10.1080/00927877708822203 —, Peirce ideals in Jordan algebras (to appear).
- J. Marshall Osborn, Representations and radicals of Jordan algebras, Scripta Math. 29 (1973), no. 3-4, 297–329. MR 486030
- Chester Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc. 19 (1968), 1171–1175. MR 230776, DOI 10.1090/S0002-9939-1968-0230776-X
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 251 (1979), 375-387
- MSC: Primary 17C10
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531985-4
- MathSciNet review: 531985