The analytic continuation of the discrete series. II
Author:
Nolan R. Wallach
Journal:
Trans. Amer. Math. Soc. 251 (1979), 19-37
MSC:
Primary 22E45; Secondary 17B10, 20G05
DOI:
https://doi.org/10.1090/S0002-9947-79-99965-3
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This is the second in a series of papers on the analytic continuation of the holomorphic discrete series. In this paper necessary and sufficient conditions for unitarizability are given in the case of line bundles. The foundations for the vector valued case are begun.
- [1] Harish-Chandra, Representations of semisimple Lie groups. IV, Amer. J. Math. 77 (1955), 743–777. MR 72427, https://doi.org/10.2307/2372596
- [2] Harish-Chandra, Representations of semisimple Lie groups. VI. Integrable and square-integrable representations, Amer. J. Math. 78 (1956), 564–628. MR 82056, https://doi.org/10.2307/2372674
- [3] Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- [4] R. Hotta and N. R. Wallach, On Matsushima's formula for the Betti numbers of a locally symmetric space (to appear).
- [5] Calvin C. Moore, Compactifications of symmetric spaces. II. The Cartan domains, Amer. J. Math. 86 (1964), 358–378. MR 161943, https://doi.org/10.2307/2373170
- [6] H. Rossi and M. Vergue, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group (to appear).
- [7] Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/70), 61–80 (German). MR 259164, https://doi.org/10.1007/BF01389889
- [8] N. R. Wallach, The analytic continuation of the discrete series. I, Trans. Amer. Math. Soc.
- [9] Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, No. 19. MR 0498996
- [10] Nolan R. Wallach, Induced representations of Lie algebras. II, Proc. Amer. Math. Soc. 21 (1969), 161–166. MR 237590, https://doi.org/10.1090/S0002-9939-1969-0237590-0
- [11] Nolan R. Wallach, On maximal subsystems of root systems, Canadian J. Math. 20 (1968), 555–574. MR 232812, https://doi.org/10.4153/CJM-1968-056-4
- [12] Norbert Wiener, The Fourier integral and certain of its applications, dover Publications, Inc., New York, 1959. MR 0100201
- [13] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N. J., 1946. (1939 ed., MR 1, 42.)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45, 17B10, 20G05
Retrieve articles in all journals with MSC: 22E45, 17B10, 20G05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-79-99965-3
Keywords:
Representation,
semisimple Lie algebra,
semisimple Lie group,
irreducibility,
unitarizability,
holomorphic discrete series,
highest weight
Article copyright:
© Copyright 1979
American Mathematical Society