## Maximal inequalities related to generalized a.e. continuity

HTML articles powered by AMS MathViewer

- by W. B. Jurkat and J. L. Troutman
- Trans. Amer. Math. Soc.
**252**(1979), 49-64 - DOI: https://doi.org/10.1090/S0002-9947-1979-0534110-9
- PDF | Request permission

## Abstract:

An integral inequality of the classical Hardy-Littlewood type is obtained for the maximal function of positive convolution operators associated with approximations of the identity in ${R^n}$. It is shown that the (formally) rearranged maximal function can in general be estimated by an elementary integral involving the decreasing rearrangements of the kernel of the approximation and the function being approximated. (The estimate always holds when the kernel has compact support or a decreasing radial majorant integrable in a neighborhood of infinity; a one-dimensional counterexample shows that integrability alone may not suffice.) The finiteness of the integral determines a Lorentz space of functions which are a.e. continuous in the generalized sense of the approximation. Conversely, in dimension one it is established that this space is the largest strongly rearrangement invariant Banach space of such functions. In particular, the new inequality provides access to the study of Cesàro continuity of order less than one.## References

- D. L. Burkholder,
*One-sided maximal functions and $H^{p}$*, J. Functional Analysis**18**(1975), 429–454. MR**0365693**, DOI 10.1016/0022-1236(75)90013-0 - Luis A. Caffarelli and Calixto P. Calderón,
*Weak type estimates for the Hardy-Littlewood maximal functions*, Studia Math.**49**(1973/74), 217–223. MR**335729**, DOI 10.4064/sm-49-3-217-223 - A. P. Calderon and A. Zygmund,
*On the existence of certain singular integrals*, Acta Math.**88**(1952), 85–139. MR**52553**, DOI 10.1007/BF02392130 - K. M. Chong and N. M. Rice,
*Equimeasurable rearrangements of functions*, Queen’s Papers in Pure and Applied Mathematics, No. 28, Queen’s University, Kingston, Ont., 1971. MR**0372140** - Antonio Córdoba,
*A radial multiplier and a related Kakeya maximal function*, Bull. Amer. Math. Soc.**81**(1975), 428–430. MR**365016**, DOI 10.1090/S0002-9904-1975-13774-8 - C. Fefferman and E. M. Stein,
*Some maximal inequalities*, Amer. J. Math.**93**(1971), 107–115. MR**284802**, DOI 10.2307/2373450 - Adriano M. Garsia,
*Topics in almost everywhere convergence*, Lectures in Advanced Mathematics, No. 4, Markham Publishing Co., Chicago, Ill., 1970. MR**0261253**
A. Kolmogorov, - G. G. Lorentz,
*On the theory of spaces $\Lambda$*, Pacific J. Math.**1**(1951), 411–429. MR**44740**, DOI 10.2140/pjm.1951.1.411 - G. O. Okikiolu,
*Aspects of the theory of bounded integral operators in $L^{p}$-spaces*, Academic Press, London-New York, 1971. MR**0445237** - S. Sawyer,
*Maximal inequalities of weak type*, Ann. of Math. (2)**84**(1966), 157–174. MR**209867**, DOI 10.2307/1970516 - E. M. Stein,
*On limits of seqences of operators*, Ann. of Math. (2)**74**(1961), 140–170. MR**125392**, DOI 10.2307/1970308 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - P. L. Walker,
*On rearranging maximal functions in $R^{n}$*, Proc. Edinburgh Math. Soc. (2)**19**(1974/75), no. 4, 363–369. MR**385047**, DOI 10.1017/S0013091500010464 - Norbert Wiener,
*The ergodic theorem*, Duke Math. J.**5**(1939), no. 1, 1–18. MR**1546100**, DOI 10.1215/S0012-7094-39-00501-6 - A. Zygmund,
*Trigonometric series. 2nd ed. Vols. I, II*, Cambridge University Press, New York, 1959. MR**0107776**

*Sur les fonctions harmoniques conjuguées et les séries de Fourier*, Fund. Math.

**7**(1925), 24-29.

## Bibliographic Information

- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**252**(1979), 49-64 - MSC: Primary 46E30; Secondary 26D15
- DOI: https://doi.org/10.1090/S0002-9947-1979-0534110-9
- MathSciNet review: 534110