Wiman-Valiron theory for entire functions of finite lower growth
HTML articles powered by AMS MathViewer
- by P. C. Fenton
- Trans. Amer. Math. Soc. 252 (1979), 221-232
- DOI: https://doi.org/10.1090/S0002-9947-1979-0534119-5
- PDF | Request permission
Abstract:
A general method of Wiman-Valiron type for dealing with entire functions of finite lower growth is presented and used to obtain the lower-order version of a result of W. K. Hayman on the real part of entire functions of small lower growth.References
- J. Clunie, The determination of an integral function of finite order by its Taylor series, J. London Math. Soc. 28 (1953), 58–66. MR 51917, DOI 10.1112/jlms/s1-28.1.58
- J. Clunie, On the determination of an integral function from its Taylor series, J. London Math. Soc. 30 (1955), 32–42. MR 67188, DOI 10.1112/jlms/s1-30.1.32
- P. C. Fenton, Some results of Wiman-Valiron type for integral functions of finite lower order, Ann. of Math. (2) 103 (1976), no. 2, 237–252. MR 396947, DOI 10.2307/1971005
- W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), no. 3, 317–358. MR 385095, DOI 10.4153/CMB-1974-064-0
- T. Kövari, On theorems of G. Pólya and P. Turán, J. Analyse Math. 6 (1958), 323–332. MR 101917, DOI 10.1007/BF02790239
- T. Kövari, On the Borel exceptional values of lacunary integral functions, J. Analyse Math. 9 (1961/62), 71–109. MR 139743, DOI 10.1007/BF02795340
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 252 (1979), 221-232
- MSC: Primary 30D15
- DOI: https://doi.org/10.1090/S0002-9947-1979-0534119-5
- MathSciNet review: 534119