Expansive homeomorphisms and topological dimension
HTML articles powered by AMS MathViewer
- by Ricardo Mañé
- Trans. Amer. Math. Soc. 252 (1979), 313-319
- DOI: https://doi.org/10.1090/S0002-9947-1979-0534124-9
- PDF | Request permission
Abstract:
Let K be a compact metric space. A homeomorphism $f: K\mid$ is expansive if there exists $\varepsilon > 0$ such that if $x, y \in K$ satisfy $d\left ( {{f^n}\left ( x \right ), {f^n}\left ( y \right )} \right ) < \varepsilon$ for all $n \in {\textbf {Z}}$ (where $d\left ( { \cdot , \cdot } \right )$ denotes the metric on K) then $x = y$. We prove that a compact metric space that admits an expansive homeomorphism is finite dimensional and that every minimal set of an expansive homeomorphism is 0-dimensional.References
- Rufus Bowen, Markov partitions and minimal sets for Axiom $\textrm {A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 907–918. MR 277002, DOI 10.2307/2373402
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 252 (1979), 313-319
- MSC: Primary 58F15; Secondary 54H20
- DOI: https://doi.org/10.1090/S0002-9947-1979-0534124-9
- MathSciNet review: 534124