Expanding maps on sets which are almost invariant. Decay and chaos
HTML articles powered by AMS MathViewer
- by Giulio Pianigiani and James A. Yorke
- Trans. Amer. Math. Soc. 252 (1979), 351-366
- DOI: https://doi.org/10.1090/S0002-9947-1979-0534126-2
- PDF | Request permission
Abstract:
Let $A \subset {R^n}$ be a bounded open set with finitely many connected components ${A_j}$ and let $T: \overline A \to {R^n}$ be a smooth map with $A \subset T\left ( A \right )$. Assume that for each ${A_j}$, $A \subset {T^m}\left ( {{A_j}} \right )$ for all m sufficiently large. We assume that T is “expansive", but we do not assume that $T\left ( A \right ) = A$. Hence for $x \in A, {T^i} \left ( x \right )$ may escape A as i increases. Let ${\mu _0}$ be a smooth measure on A (with ${\operatorname {inf} _A} {{d{\mu _0}} \left / {\vphantom {{d{\mu _0}} {dx}}} \right . {dx}} > 0$) and let $x \in A$ be chosen at random (using ${\mu _0}$). Since T is “expansive” we may expect ${T^i}\left ( x \right )$ to oscillate chaotically on A for a certain time and eventually escape A. For each measurable set $E \subset A$ define ${\mu _m}\left ( E \right )$ to be the conditional probability that ${T^m}\left ( x \right ) \in E$ given that $x,T\left ( x \right ),\ldots ,{T^m}\left ( x \right )$ are in A. We show that ${\mu _m}$ converges to a smooth measure $\mu$ which is independent of the choice of ${\mu _0}$. One dimensional examples are stressed.References
- James L. Kaplan and James A. Yorke, Preturbulence: a regime observed in a fluid flow model of Lorenz, Comm. Math. Phys. 67 (1979), no. 2, 93–108. MR 539545, DOI 10.1007/BF01221359
- A. Lasota and James A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488 (1974). MR 335758, DOI 10.1090/S0002-9947-1973-0335758-1
- Tien Yien Li and James A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183–192. MR 457679, DOI 10.1090/S0002-9947-1978-0457679-0 E. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130-141.
- Giulio Pianigiani, Existence of invariant measures for piecewise continuous transformations, Ann. Polon. Math. 40 (1981), no. 1, 39–45. MR 645796, DOI 10.4064/ap-40-1-39-45
- K. A. Robbins, A new approach to subcritical instability and turbulent transitions in a simple dynamo, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 2, 309–325. MR 462177, DOI 10.1017/S0305004100053950
- S. Smale and R. F. Williams, The qualitative analysis of a difference equation of population growth, J. Math. Biol. 3 (1976), no. 1, 1–4. MR 414147, DOI 10.1007/BF00307853 J. Yorke and E. Yorke, Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model (preprint).
- A. A. Kosjakin and E. A. Sandler, Ergodic properties of a certain class of piecewise smooth transformations of a segment, Izv. Vysš. Učebn. Zaved. Matematika 3(118) (1972), 32–40 (Russian). MR 0299754
- André Avez, Propriétés ergodiques des endomorphisms dilatants des variétés compactes, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A610–A612 (French). MR 231389
- K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83–92. MR 245761, DOI 10.4064/sm-33-1-83-92
- Michael S. Waterman, Some ergodic properties of multi-dimensional $f$-expansions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 16 (1970), 77–103. MR 282939, DOI 10.1007/BF00535691
- Sherman Wong, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc. 246 (1978), 493–500. MR 515555, DOI 10.1090/S0002-9947-1978-0515555-9
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI 10.1007/BF01389848
- Rufus Bowen, Some systems with unique equilibrium states, Math. Systems Theory 8 (1974/75), no. 3, 193–202. MR 399413, DOI 10.1007/BF01762666 —, Equilibrium states and the theory of Anosov diffeomorphisms, Lecture Notes in Math., vol. 470, Springer-Verlag, Berlin and New York, 1975.
- Ernesto Franco, Flows with unique equilibrium states, Amer. J. Math. 99 (1977), no. 3, 486–514. MR 442193, DOI 10.2307/2373927
- Tien Yien Li and James A. Yorke, Ergodic maps on $[0,\,1]$ and nonlinear pseudorandom number generators, Nonlinear Anal. 2 (1978), no. 4, 473–481. MR 512484, DOI 10.1016/0362-546X(78)90054-8
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 252 (1979), 351-366
- MSC: Primary 58F11; Secondary 28D15, 34C35, 58F12
- DOI: https://doi.org/10.1090/S0002-9947-1979-0534126-2
- MathSciNet review: 534126