An algebraic determination of closed orientable -manifolds
Authors:
William Jaco and Robert Myers
Journal:
Trans. Amer. Math. Soc. 253 (1979), 149-170
MSC:
Primary 57N10
DOI:
https://doi.org/10.1090/S0002-9947-1979-0536940-6
MathSciNet review:
536940
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Associated with each polyhedral simple closed curve j in a closed, orientable 3-manifold M is the fundamental group of the complement of j in M, . The set,
, of knot groups of M is the set of groups
as j ranges over all polyhedral simple closed curves in M. We prove that two closed, orientable 3-manifolds M and N are homeomorphic if and only if
. We refine the set of knot groups to a subset
of fibered knot groups of M and modify the above proof to show that two closed, orientable 3-manifolds M and N are homeomorphic if and only if
.
- [1] R. H. Bing, Necessary and sufficient conditions that a 3-manifold be 𝑆³, Ann. of Math. (2) 68 (1958), 17–37. MR 95471, https://doi.org/10.2307/1970041
- [2] R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217–231. MR 278287, https://doi.org/10.1090/S0002-9947-1971-0278287-4
- [3] E. J. Brody, The topological classification of the lens spaces, Ann. of Math. (2) 71 (1960), 163–184. MR 116336, https://doi.org/10.2307/1969884
- [4] James W. Cannon and C. D. Feustel, Essential embeddings of annuli and Möbius bands in 3-manifolds, Trans. Amer. Math. Soc. 215 (1976), 219–239. MR 391094, https://doi.org/10.1090/S0002-9947-1976-0391094-1
- [5] A. C. Conner, An algebraic characterization of 3-manifolds, Notices Amer. Math. Soc. 17 (1970), Abstract # 672-635.
- [6] -, An algebraic characterization of the 3-sphere (manuscript).
- [7] Samuel Eilenberg, On the problems of topology, Ann. of Math. (2) 50 (1949), 247–260. MR 30189, https://doi.org/10.2307/1969448
- [8] R. H. Fox, Recent development of knot theory at Princeton, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., 1952, pp. 453–457. MR 0048023
- [9] F. González-Acuña, 3-dimensional open books, Lectures, Univ. of Iowa Topology Seminar, 1974/75.
- [10] John Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR 0415619
- [11] William H. Jaco and Peter B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192. MR 539411, https://doi.org/10.1090/memo/0220
- [12] -, Seifert fibered spaces in 3-manifolds. II: Centralizers, roots and relations, (preprint).
- [13] Klaus Johannson, Équivalences d’homotopie des variétés de dimension 3, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 23, Ai, A1009–A1010 (French). MR 391096
- [14] H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jber. Deutsch. Math.-Verein. 38 (1929), 248-260.
- [15] J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1–7. MR 142125, https://doi.org/10.2307/2372800
- [16] Robert Myers, Open book decompositions of 3-manifolds, Proc. Amer. Math. Soc. 72 (1978), no. 2, 397–402. MR 507346, https://doi.org/10.1090/S0002-9939-1978-0507346-5
- [17] K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math Sem. Hamburg 11 (1935), 102-109.
- [18] Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131–286 (German). MR 72482, https://doi.org/10.1007/BF02392437
- [19] Jonathan Simon, An algebraic classification of knots in 𝑆³, Ann. of Math. (2) 97 (1973), 1–13. MR 310861, https://doi.org/10.2307/1970874
- [20] Jonathan Simon, Fibered knots in homotopy 3-spheres, Proc. Amer. Math. Soc. 58 (1976), 325–328. MR 645362, https://doi.org/10.1090/S0002-9939-1976-0645362-1
- [21] Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, https://doi.org/10.2307/1970594
- [22] -, On the determination of some 3-manifolds by their fundamental groups alone (Proc. Internat. Sympos. on Topology and its Applications, Herceg-Novi, Yugoslavia, 1968), Belgrade, 1969, pp. 331-332.
- [23] Alden Wright, Mappings from 3-manifolds onto 3-manifolds, Trans. Amer. Math. Soc. 167 (1972), 479–495. MR 339186, https://doi.org/10.1090/S0002-9947-1972-0339186-3
Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N10
Retrieve articles in all journals with MSC: 57N10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1979-0536940-6
Keywords:
3-manifold,
knot-manifold,
knot-group,
fibered-knot,
Seifert fibered manifold,
characteristic Seifert manifold,
characterization
Article copyright:
© Copyright 1979
American Mathematical Society