On the positive spectrum of Schrödinger operators with long range potentials
HTML articles powered by AMS MathViewer
- by G. B. Khosrovshahi, H. A. Levine and L. E. Payne
- Trans. Amer. Math. Soc. 253 (1979), 211-228
- DOI: https://doi.org/10.1090/S0002-9947-1979-0536943-1
- PDF | Request permission
Abstract:
In this paper we are concerned with solutions of the equation $\Delta u + p(x)u = 0$ in an unbounded domain $\Omega$ in ${R^n}$, $\Omega \supset \{ x| \left \| x \right \| \geqslant {R_0}\}$. The main result is a determination of conditions on the asymptotic behavior of $p(x)$ sufficient to guarantee that no nontrivial ${L_2}$ solution exists. Our results contain those of previous authors as special cases. The principal application is to the determination of upper bounds for positive eigenvalues of Schrödinger operators.References
- Shmuel Agmon, Lower bounds for solutions of Schrödinger equations, J. Analyse Math. 23 (1970), 1–25. MR 276624, DOI 10.1007/BF02795485
- Shmuel Agmon, Lower bounds for solutions of Schrödinger-type equations in unbounded domains, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) Univ. Tokyo Press, Tokyo, 1970, pp. 216–224. MR 0264242 L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin and New York, 1963.
- Tosio Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math. 12 (1959), 403–425. MR 108633, DOI 10.1002/cpa.3160120302
- Tosio Kato, Some mathematical problems in quantum mechanics, Progr. Theoret. Phys. Suppl. 40 (1967), 3–19. MR 0218080, DOI 10.1143/ptps.40.3
- G. B. Khosrovshahi, Nonexistence of nontrivial solutions of Schrödinger type systems, SIAM J. Math. Anal. 8 (1977), no. 6, 998–1013. MR 454314, DOI 10.1137/0508077
- Reiji Konno, Non-existence of positive eigenvalues of Schrödinger operators in infinite domains, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 19 (1972), 393–402. MR 336046
- Richard Lavine, Absolute continuity of positive spectrum for Schrödinger operators with long-range potentials, J. Functional Analysis 12 (1973), 30–54. MR 0342880, DOI 10.1016/0022-1236(73)90088-8
- F. Odeh, Note on differential operators with a purely continuous spectrum, Proc. Amer. Math. Soc. 16 (1965), 363–366. MR 177193, DOI 10.1090/S0002-9939-1965-0177193-6
- Barry Simon, On positive eigenvalues of one-body Schrödinger operators, Comm. Pure Appl. Math. 22 (1969), 531–538. MR 247300, DOI 10.1002/cpa.3160220405 J. von Neumann and E. P. Wigner, Über merkwürdige diskrete Eigenwerte, Phys. Z. 50 (1929), 465-467.
- Joachim Weidmann, On the continuous spectrum of Schrödinger operators, Comm. Pure Appl. Math. 19 (1966), 107–110. MR 192186, DOI 10.1002/cpa.3160190108
- Joachim Weidmann, The virial theorem and its application to the spectral theory of Schrödinger operators, Bull. Amer. Math. Soc. 73 (1967), 452–456. MR 208197, DOI 10.1090/S0002-9904-1967-11781-6
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 253 (1979), 211-228
- MSC: Primary 35J10; Secondary 35P99, 47A40
- DOI: https://doi.org/10.1090/S0002-9947-1979-0536943-1
- MathSciNet review: 536943