Dispersion points for linear sets and approximate moduli for some stochastic processes
HTML articles powered by AMS MathViewer
- by Donald Geman
- Trans. Amer. Math. Soc. 253 (1979), 257-272
- DOI: https://doi.org/10.1090/S0002-9947-1979-0536946-7
- PDF | Request permission
Abstract:
Let $\Gamma \in [0, 1]$ be Lebesgue measurable; then $\Gamma$ has Lebesgue density 0 at the origin if and only if \[ \int _\Gamma {{t^{ - 1}}\Psi ({t^{ - 1}} {\text {meas}}} \{ \Gamma \cap (0, t)\} ) dt < \infty \] for some continuous, strictly increasing function $\Psi (t) (0 \leqslant t \leqslant 1)$ with $\Psi (0) = 0$. This result is applied to the local growth of certain Gaussian (and other) proceses $\{ {X_t}, t \geqslant 0\}$ as follows: we find continuous, increasing functions $\phi (t)$ and $\eta (t) (t \geqslant 0)$ such that, with probability one, the set $\{ t:\eta (t) \leqslant \left | {{X_t} - {X_0}} \right | \leqslant \phi (t)\}$ has density 1 at the origin.References
- Simeon M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 (1973/74), 69–94. MR 317397, DOI 10.1512/iumj.1973.23.23006
- Harald Cramér and M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0217860
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- Donald Geman and Joseph Horowitz, Occupation densities, Ann. Probab. 8 (1980), no. 1, 1–67. MR 556414
- Donald Geman and Joel Zinn, On the increments of multidimensional random fields, Ann. Probability 6 (1978), no. 1, 151–158. MR 461638, DOI 10.1214/aop/1176995620
- Casper Goffman and Daniel Waterman, Approximately continuous transformations, Proc. Amer. Math. Soc. 12 (1961), 116–121. MR 120327, DOI 10.1090/S0002-9939-1961-0120327-6
- Kiyoshi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-New York, 1965. MR 0199891
- Frank B. Knight, Existence of small oscillations at zeros of Brownian motion, Séminaire de Probabilités, VIII (Univ. Strasbourg, année universitaire 1972–1973), Lecture Notes in Math., Vol. 381, Springer, Berlin, 1974, pp. 134–149. MR 0373038 M. B. Marcus, Sample paths of Gaussian processes, Northwestern University, Evanston, Ill., 1977.
- V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211–226 (1964). MR 175194, DOI 10.1007/BF00534910
- J. B. Walsh, Some topologies connected with Lebesgue measure, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), Lecture Notes in Math., Vol. 191, Springer, Berlin, 1971, pp. 290–310. MR 0375445
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 253 (1979), 257-272
- MSC: Primary 28A10; Secondary 26A15, 60G15, 60G17
- DOI: https://doi.org/10.1090/S0002-9947-1979-0536946-7
- MathSciNet review: 536946