Equivariant concordance of invariant knots
HTML articles powered by AMS MathViewer
- by Neal W. Stoltzfus
- Trans. Amer. Math. Soc. 254 (1979), 1-45
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539906-5
- PDF | Request permission
Abstract:
The classification of equivariant concordance classes of high-dimensional codimension two knots invariant under a cyclic action, T, of order m has previously been reported on by Cappell and Shaneson [CS2]. They give an algebraic solution in terms of their algebraic k-theoretic $\Gamma$-groups. This work gives an alternative description by generalizing the well-known Seifert linking forms of knot theory to the equivariant case. This allows explicit algorithmic computations by means of the procedures and invariants of algebraic number theory (see the subsequent work [St], particularly Theorem 6.13). Following Levine [L3], we define bilinear forms on the middle-dimensional homology of an equivariant Seifert surface ${B_i}(x,y) = L(x,{i_ + }(T_{\ast }^iy))$, for $i = 1, \cdots ,m$. Our first result (2.5) is that an invariant knot is equivariantly concordant to an invariant trivial knot if and only if there is a subspace of half the rank on which the ${B_i}$ vanish simultaneously. We then introduce the concepts of equivariant isometric structure and algebraic concordance which mirror the preceding geometric ideas. The resulting equivalence classes form a group under direct sum which has infinitely many elements of each of the possible orders (two, four and infinite), at least for odd periods. The central computation (3.4) gives an isomorphism of the equivariant concordance group with the subgroup of the algebraic knot concordance group whose Alexander polynomial, $\Delta$, satisfies the classical relation $\left | {\prod \nolimits _{i = 1}^m {\Delta \left ( {{\lambda ^i}} \right )} } \right | = 1$, where $\lambda$ is a primitive mth root of unity. This condition assures that the m-fold cover of the knot complement is also a homology circle, permitting the geometric realization of each equivariant isometric structure. Finally, we make an explicit computation of the Browder-Livesay desuspension invariant for knots invariant under an involution and also elucidate the connection of our methods with the results of [CS2] by explicitly describing a homomorphism from the group of equivariant isometric structures to the appropriate $\Gamma$-group.References
- Hyman Bass, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, Topology 4 (1965), 391–410. MR 193120, DOI 10.1016/0040-9383(66)90036-X —, ${K_2}$ des corps globaux, Seminaire Bourbaki, 23e annee, 1970/71, no. 394.
- Richard C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. (2) 65 (1957), 340–356. MR 85512, DOI 10.2307/1969966
- William Browder, Manifolds with $\pi _{1}=Z$, Bull. Amer. Math. Soc. 72 (1966), 238–244. MR 190940, DOI 10.1090/S0002-9904-1966-11482-9
- William Browder, Surgery and the theory of differentiable transformation groups, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 1–46. MR 0261629 —, Free ${Z_p}$-actions on homotopy spheres, Topology of Manifolds, Markham, Chicago, Ill., 1970, pp. 217-226.
- William Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65, Springer-Verlag, New York-Heidelberg, 1972. MR 0358813, DOI 10.1007/978-3-642-50020-6
- W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, Tohoku Math. J. (2) 25 (1973), 69–87. MR 321077, DOI 10.2748/tmj/1178241416
- William Browder, Ted Petrie, and C. T. C. Wall, The classification of free actions of cyclic groups of odd order on homotopy spheres, Bull. Amer. Math. Soc. 77 (1971), 455–459. MR 279826, DOI 10.1090/S0002-9904-1971-12736-2
- E. Burger, Über Gruppen mit Verschlingungen, J. Reine Angew. Math. 188 (1950), 193–200 (German). MR 43089, DOI 10.1515/crll.1950.188.193
- Sylvain E. Cappell and Julius L. Shaneson, Submanifolds, group actions and knots. I, II, Bull. Amer. Math. Soc. 78 (1972), 1045–1048; ibid. 78 (1972), 1049–1052. MR 383432, DOI 10.1090/S0002-9904-1972-13106-9
- Sylvain E. Cappell and Julius L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277–348. MR 339216, DOI 10.2307/1970901
- A. Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, New York-Berlin, 1972 (German). MR 0415602, DOI 10.1007/978-3-662-00756-3
- Ralph H. Fox and John W. Milnor, Singularities of $2$-spheres in $4$-space and cobordism of knots, Osaka Math. J. 3 (1966), 257–267. MR 211392
- Ralph H. Fox, Free differential calculus. III. Subgroups, Ann. of Math. (2) 64 (1956), 407–419. MR 95876, DOI 10.2307/1969592
- R. H. Fox, On knots whose points are fixed under a periodic transformation of the $3$-sphere, Osaka Math. J. 10 (1958), 31–35. MR 131872
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099
- F. B. Fuller, A relation between degree and linking numbers, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 258–262. MR 0084137
- C. McA. Gordon, Knots whose branched cyclic coverings have periodic homology, Trans. Amer. Math. Soc. 168 (1972), 357–370. MR 295327, DOI 10.1090/S0002-9947-1972-0295327-8
- Allen E. Hatcher, Concordance and isotopy of smooth embeddings in low codimensions, Invent. Math. 21 (1973), 223–232. MR 334251, DOI 10.1007/BF01390198 F. E. P. Hirzebruch, Singularities and exotic spheres, Seminaire Bourbaki, 19e annee, 1966/67, no. 314.
- Mitsuyoshi Kato and Yukio Matsumoto, Simply connected surgery of submanifolds in codimension two. I, J. Math. Soc. Japan 24 (1972), 586–608. MR 307249, DOI 10.2969/jmsj/02440586
- Michel A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225–271 (French). MR 189052, DOI 10.24033/bsmf.1624
- Michel A. Kervaire, Knot cobordism in codimension two, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 83–105. MR 0283786
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- M. Kervaire and A. Vasquez, Simple-connectivity and the Browder-Novikov theorem, Trans. Amer. Math. Soc. 126 (1967), 508–513. MR 208602, DOI 10.1090/S0002-9947-1967-0208602-8
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Solomon Lefschetz, Algebraic Topology, American Mathematical Society Colloquium Publications, Vol. 27, American Mathematical Society, New York, 1942. MR 0007093, DOI 10.1090/coll/027
- J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9–16. MR 179803, DOI 10.1016/0040-9383(65)90045-5
- J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537–554. MR 200922, DOI 10.2307/1970459 —, Knot cobordism in codimension two, Comment. Math. Helv. 44 (1968), 229-244.
- J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98–110; addendum, ibid. 8 (1969), 355. MR 253348, DOI 10.1007/BF01404613
- J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185–198. MR 266226, DOI 10.1007/BF02567325
- S. López de Medrano, Involutions on manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 59, Springer-Verlag, New York-Heidelberg, 1971. MR 0298698, DOI 10.1007/978-3-642-65012-3 —, Nudos invariantes bajo involuciones. I, An. Inst. Mat. Univ. Nac Autónoma de México 8 (1969), 81-90. —, Invariant knots and surgery in codimension two, Actes Congres Internat. Math. 2, Gauthier-VIllars, Paris, 1970.
- Yukio Matsumoto, Knot cobordism groups and surgery in codimension two, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 253–317. MR 334228
- John Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137–147. MR 141115, DOI 10.2307/1970268
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- John G. Hocking (ed.), Conference on the Topology of Manifolds, The Prindle, Weber & Schmidt Complementary Series in Mathematics, Vol. 13, Prindle, Weber & Schmidt, Boston, Mass.-London-Sydney, 1968. MR 0233363
- John Milnor, On isometries of inner product spaces, Invent. Math. 8 (1969), 83–97. MR 249519, DOI 10.1007/BF01404612
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942, DOI 10.1515/9781400878055
- Kurt Reidemeister, Durchschnitt und Schnitt von Homotopieketten, Monatsh. Math. Phys. 48 (1939), 226–239 (German). MR 634, DOI 10.1007/BF01696180
- Raymond A. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543–555. MR 182965, DOI 10.1002/cpa.3160180309
- Reinhard E. Schultz, Smooth structures on $S^{p}\times S^{q}$, Ann. of Math. (2) 90 (1969), 187–198. MR 250321, DOI 10.2307/1970687
- H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1935), no. 1, 571–592 (German). MR 1512955, DOI 10.1007/BF01448044
- Neal W. Stoltzfus, Unraveling the integral knot concordance group, Mem. Amer. Math. Soc. 12 (1977), no. 192, iv+91. MR 467764, DOI 10.1090/memo/0192
- Julius L. Shaneson, Embeddings with codimension two of spheres in spheres and $H$-cobordisms of $S^{1}\times S^{3}$, Bull. Amer. Math. Soc. 74 (1968), 972–974. MR 230325, DOI 10.1090/S0002-9904-1968-12107-X
- Julius L. Shaneson, Wall’s surgery obstruction groups for $G\times Z$, Ann. of Math. (2) 90 (1969), 296–334. MR 246310, DOI 10.2307/1970726
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- H. F. Trotter, On $S$-equivalence of Seifert matrices, Invent. Math. 20 (1973), 173–207. MR 645546, DOI 10.1007/BF01394094
- C. T. C. Wall, Diffeomorphisms of $4$-manifolds, J. London Math. Soc. 39 (1964), 131–140. MR 163323, DOI 10.1112/jlms/s1-39.1.131
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
- C. T. C. Wall, Quadratic forms on finite groups. II, Bull. London Math. Soc. 4 (1972), 156–160. MR 322071, DOI 10.1112/blms/4.2.156
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 254 (1979), 1-45
- MSC: Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539906-5
- MathSciNet review: 539906