Free states of the gauge invariant canonical anticommutation relations. II
HTML articles powered by AMS MathViewer
- by B. M. Baker
- Trans. Amer. Math. Soc. 254 (1979), 135-155
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539911-9
- PDF | Request permission
Abstract:
A class of representations of the gauge invariant subalgebra of the canonical anticommutation relations (henceforth GICAR) is studied. These representations are induced by restricting the well-known pure, nongauge invariant generalized free states of the canonical anticommutation relations (henceforth CAR). Denoting a state of the CAR by $\omega$, and the unique generalized free state of the CAR such that $\omega \left ( {a{{\left ( f \right )}^{\ast }}a\left ( g \right )} \right ) = \left ( {f,Tg} \right )$ and $\omega \left ( {a\left ( f \right )a\left ( g \right )} \right ) = \left ( {Sf,g} \right )$ by ${\omega _{S,T}}$, it is shown that a pure, nongauge invariant state ${\omega _{S,T}}$ induces a factor representation of the GICAR if and only if $Tr T\left ( {I - T} \right ) = \infty$.References
- Huzihiro Araki, On quasifree states of $\textrm {CAR}$ and Bogoliubov automorphisms, Publ. Res. Inst. Math. Sci. 6 (1970/71), 385โ442. MR 0295702, DOI 10.2977/prims/1195193913
- B. M. Baker, Free states of the gauge invariant canonical anticommutation relations, Trans. Amer. Math. Soc. 237 (1978), 35โ61. MR 479361, DOI 10.1090/S0002-9947-1978-0479361-6
- E. Balslev, J. Manuceau, and A. Verbeure, Representations of anticommutation relations and Bogolioubov transformations, Comm. Math. Phys. 8 (1968), 315โ326. MR 253646, DOI 10.1007/BF01646271
- Ola Bratteli, Inductive limits of finite dimensional $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195โ234. MR 312282, DOI 10.1090/S0002-9947-1972-0312282-2
- James G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318โ340. MR 112057, DOI 10.1090/S0002-9947-1960-0112057-5
- R. Haag, The mathematical structure of the Bardeen-Cooper- Schrieffer model, Nuovo Cimento (10) 25 (1962), 287โ299 (English, with Italian summary). MR 145921, DOI 10.1007/BF02731446 R. T. Powers, Thesis, Princeton University, Princeton, N. J., 1967.
- Robert T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. (2) 86 (1967), 138โ171. MR 218905, DOI 10.2307/1970364
- Robert T. Powers and Erling Stรธrmer, Free states of the canonical anticommutation relations, Comm. Math. Phys. 16 (1970), 1โ33. MR 269230, DOI 10.1007/BF01645492 G. Stamatopoulos, Thesis, University of Pennsylvania, Philadelphia, Pa., 1974.
- A. van Daele and A. Verbeure, Unitary equivalence of Fock representations on the Weyl algebra, Comm. Math. Phys. 20 (1971), 268โ278. MR 286406, DOI 10.1007/BF01646623
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 254 (1979), 135-155
- MSC: Primary 81D05; Secondary 46L10
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539911-9
- MathSciNet review: 539911