Analytic extensions and selections
HTML articles powered by AMS MathViewer
- by J. Globevnik
- Trans. Amer. Math. Soc. 254 (1979), 171-177
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539913-2
- PDF | Request permission
Abstract:
Let G be a closed subset of the closed unit disc in C, let F be a closed subset of the unit circle of measure 0 and let $\Phi$ map G into the class of all open subsets of a complex Banach space X. Under suitable additional assumptions on $\Phi$ we prove that given any continuous function $f: F \to X$ satisfying $f(z) \in {\text {closure(}}\Phi (z)) (z \in F \cap G)$ there exists a continuous function f from the closed unit disc into X, analytic in the open unit disc, which extends f and satisfies $\tilde f(z) \in \Phi (z) (z \in G - F)$. This enables us to generalize and sharpen known dominated extension theorems for the disc algebra.References
- Errett Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140–143. MR 133462, DOI 10.1090/S0002-9939-1962-0133462-4
- T. W. Gamelin, Restrictions of subspaces of $C(X)$, Trans. Amer. Math. Soc. 112 (1964), 278–286. MR 162132, DOI 10.1090/S0002-9947-1964-0162132-8
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- J. Globevnik, Analytic extensions of vector-valued functions, Pacific J. Math. 63 (1976), no. 2, 389–395. MR 410349, DOI 10.2140/pjm.1976.63.389
- J. Globevnik, The range of analytic extensions, Pacific J. Math. 69 (1977), no. 2, 365–384. MR 442694, DOI 10.2140/pjm.1977.69.365
- Per Hag, A generalization of the Rudin-Carleson theorem, Proc. Amer. Math. Soc. 43 (1974), 341–344. MR 338755, DOI 10.1090/S0002-9939-1974-0338755-1
- Per Hag, Restrictions of convex subsets of $C(X)$, Trans. Amer. Math. Soc. 233 (1977), 283–294. MR 467264, DOI 10.1090/S0002-9947-1977-0467264-1
- E. Michael, Selected Selection Theorems, Amer. Math. Monthly 63 (1956), no. 4, 233–238. MR 1529282, DOI 10.2307/2310346
- Ernest Michael, Continuous selections. II, Ann. of Math. (2) 64 (1956), 562–580. MR 80909, DOI 10.2307/1969603 Z. Semadeni, Simultaneous extensions and projections in spaces of continuous functions, Lecture Notes, Univ. of Aarhus, 1965.
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 254 (1979), 171-177
- MSC: Primary 46J10; Secondary 30H05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539913-2
- MathSciNet review: 539913