Constructing framed $4$-manifolds with given almost framed boundaries
HTML articles powered by AMS MathViewer
- by Steve J. Kaplan
- Trans. Amer. Math. Soc. 254 (1979), 237-263
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539917-X
- PDF | Request permission
Abstract:
Two methods are presented for constructing framed 4-manifolds with given almost framed boundaries. The main tools are the “moves” of Kirby’s calculus of framed links. A new description is given for the $\mu$-in-variant of a knot and this description is used to study almost framed 3-manifolds.References
- M. Freedman and K. C. Kirby, A geometric proof of Rohlin’s theorem, Proc. Sympos Pure Math., vol. 32, part 2, Amer. Math. Soc., Providence, R. I., 1976.
- C. McA. Gordon, Knots, homology spheres, and contractible $4$-manifolds, Topology 14 (1975), 151–172. MR 402762, DOI 10.1016/0040-9383(75)90024-5 J. Harer, A. Kas and R. Kirby, (to appear).
- Nathan Jacobson, Basic algebra. I, W. H. Freeman and Co., San Francisco, Calif., 1974. MR 0356989
- Michel A. Kervaire and John W. Milnor, On $2$-spheres in $4$-manifolds, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1651–1657. MR 133134, DOI 10.1073/pnas.47.10.1651
- Robion Kirby, A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, DOI 10.1007/BF01406222
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI 10.2307/1970373 J. Milnor, Differentiable manifolds which are homotopy spheres, (mimeographed) Princeton, 1959.
- Raymond A. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543–555. MR 182965, DOI 10.1002/cpa.3160180309
- Dennis Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975), no. 3, 275–277. MR 383415, DOI 10.1016/0040-9383(75)90009-9
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 254 (1979), 237-263
- MSC: Primary 57N13; Secondary 57M25, 57N10
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539917-X
- MathSciNet review: 539917