Selection theorems for $G_{\delta }$-valued multifunctions
HTML articles powered by AMS MathViewer
- by S. M. Srivastava
- Trans. Amer. Math. Soc. 254 (1979), 283-293
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539919-3
- PDF | Request permission
Abstract:
In this paper we establish under suitable conditions the existence of measurable selectors for ${G_\delta }$-valued multifunctions. In particular we prove that a measurable partition of a Polish space into ${G_\delta }$ sets admits a Borel selector.References
- David Blackwell, On a class of probability spaces, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, University of California Press, Berkeley-Los Angeles, Calif., 1956, pp. 1–6. MR 0084882
- John Burgess and Douglas Miller, Remarks on invariant descriptive set theory, Fund. Math. 90 (1975), no. 1, 53–75. MR 403975, DOI 10.4064/fm-90-1-53-75
- Robert R. Kallman and R. D. Mauldin, A cross section theorem and an application to $C^*$-algebras, Proc. Amer. Math. Soc. 69 (1978), no. 1, 57–61. MR 463390, DOI 10.1090/S0002-9939-1978-0463390-8
- K. Kuratovskiĭ, Topologiya. Tom 2, Izdat. “Mir”, Moscow, 1969 (Russian). Translated from the English by M. Ja. Antonovskiĭ. MR 0259836
- K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397–403 (English, with Russian summary). MR 188994
- Jean Saint-Raymond, Boréliens à coupes $K_{\sigma }$, Bull. Soc. Math. France 104 (1976), no. 4, 389–400. MR 433418, DOI 10.24033/bsmf.1835
- Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), no. 5, 859–903. MR 486391, DOI 10.1137/0315056
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 254 (1979), 283-293
- MSC: Primary 54C65
- DOI: https://doi.org/10.1090/S0002-9947-1979-0539919-3
- MathSciNet review: 539919