THE DIRICHLET NORM AND THE NORM OF SZEGÖ TYPE

BY

SABUROU SAITO

Abstract. Let S be a smoothly bounded region in the complex plane. Let \(g(z, t) \) denote the Green's function of S with pole at \(t \). We show that

\[
\int_S |f(z)|^2 \, dz \, dt < \frac{1}{2} \int_{\partial S} |f(z)|^2 \left(\frac{\partial g(z, t)}{\partial n_z} \right)^{-1} |dz|
\]

holds for any analytic function \(f(z) \) on \(S \cup \partial S \). This curious inequality is obtained as a special case of a much more general result.

1. Introduction and preliminary facts. Let \(S \) denote an arbitrary compact bordered Riemann surface with boundary contours \(\{C_r\}_{r=1}^{2g+m-1} \) and of genus \(g \). Let \(\{C_r\}_{r=1}^{2g+m-1} \) be a canonical homology basis for \(S \). Let \(W(z, t) \) denote a meromorphic function whose real part is the Green's function \(g(z, t) \) with pole at \(t \in S \). The differential \(\text{id} W(z, t) \) is positive along \(\partial S \) and has \(N = 2g + m - 1 \) zeros \(\{t_r\} \) in \(S \). We assume that the points \(t_r \) are simple and they are not on \(\{C_r\}_{r=1}^{2g+m-1} \); the other cases will require only a slight modification. For simplicity, we do not distinguish between points \(z \in S \cup \partial S \) and local parameters \(z \). For an arbitrary integer \(q \) and for any positive continuous function \(\rho(z) \) on \(\partial S \), we let \(H^p_{\rho, q}(S) \) be the Banach space of analytic differentials \(f(z)(dz)^q \) of order \(q \) on \(S \) with a finite norm

\[
\left\{ \frac{1}{2\pi} \int_{\partial S} |f(z)(dz)^q|^p \rho(z) [\text{id} W(z, t)]^{1-q} \right\}^{1/p} < \infty,
\]

where \(f(z) \) means the Fatou boundary value of \(f \) at \(z \in \partial S \). Let \(K_{q, u}(z, \bar{u})(dz)^q \) be the reproducing kernel of \(H^q_{\rho, q}(S) \) which is characterized by the reproducing property

\[
f(u) = \frac{1}{2\pi} \int_{\partial S} f(z)(dz)^q K_{q, u}(z, \bar{u})(dz)^q \rho(z) [\text{id} W(z, t)]^{1-2q}
\]

for all \(f(z)(dz)^q \in H^q_{\rho, q}(S) \) (see [5]). Let \(L_{q, u}(z, u)(dz)^{1-q} \) denote the adjoint \(L \)-kernel of \(K_{q, u}(z, \bar{u})(dz)^q \). Then, \(L_{q, u}(z, u)(dz)^{1-q} \) is a meromorphic differential on \(S \) of order \(1 - q \) with a simple pole at \(u \) having residue 1.

Received by the editors March 13, 1978.

Key words and phrases. Bergman kernel, kernel of Szegö type, compact bordered Riemann surface, critical points of the Green's function, direct product of two spaces of Szegö type, Dirichlet integral of analytic function.

Dedicated to my father on his 75th birthday.

© 1979 American Mathematical Society

0002-9947/79/0000-0467/S03.50

355
Moreover:

\[K_{q,t,\rho}(z, \bar{u})(dz)^q \rho(z)[\text{id } W(z, t)]^{1-2q} = (1/i)L_{q,t,\rho}(z, u)(dz)^{1-q} \quad \text{along } \partial S. \]

(1.1)

We note that \(K_{q,t,\rho}(z, \bar{u}) \) and \(L_{q,t,\rho}(z, u) \) are continuous along \(\partial S \). If \(S \) is a bounded regular region in the plane, we can define these kernels for arbitrary real values of \(q \) (cf. [5, §§2 and 6]).

Next, let \(K^E(z, \bar{u}) \) and \(L^E(z, u) \) denote the exact Bergman kernel and its adjoint \(L \)-kernel on \(S \), respectively (cf. [8, p. 117]). \(L^E(z, u)(dz) \) is analytic on \(S \cup \partial S \) except for \(u \), where it has a double pole

\[\left\{ \frac{1}{\pi} \frac{1}{(z - u)^2} + \text{regular terms} \right\} dz. \]

(1.2)

Furthermore, it satisfies the relation

\[-K^E(z, \bar{u})(dz) = L^E(u, z)(dz) \quad \text{along } \partial S. \]

(1.3)

Let \(Z_\rho(z) = \int C(z, \bar{u}) dz \). Then \(\{Z_\rho(z)(dz)\}_\rho \) is a basis for the analytic differentials on \(S \) which are real along \(\partial S \). Here \(L(z, \bar{z}) \) is the adjoint \(L \)-kernel of the usual Bergman kernel \(K(z, \bar{z}) \) on \(S \) (cf. [8, §§4.3, 4.5 and 4.10]). Then from (1.1) and (1.3), we obtain

\[K_{q,t,\rho}(z, \bar{u})K_{1-q,t,\rho}(z, \bar{u}) = \pi K^E(z, \bar{u}) + \sum_{\rho=1}^{N} \sum_{\mu=1}^{N} C_{\rho,\mu} Z_\rho(u) Z_\mu(z) \]

(1.4)

and

\[L_{q,t,\rho}(z, u)L_{1-q,t,\rho}(z, u) = \pi L^E(u, z) - \sum_{\rho=1}^{N} \sum_{\mu=1}^{N} C_{\rho,\mu} Z_\rho(u) Z_\mu(z), \]

(1.5)

where the constants \(C_{\rho,\mu} \) are uniquely determined as in [5].

2. The main theorem. Let \(\{\Phi_j(z)(dz)^q\}_{j=1}^\infty \) and \(\{\Psi_j(z)(dz)^{1-q}\}_{j=1}^\infty \) be complete orthonormal systems for \(H^2_{\rho} (S) \) and \(H^{1-\rho}_\rho (S) \), respectively. Let \(H = H^2_{\rho} (S) \otimes H^{1-\rho}_\rho (S) \) denote the direct product of \(H^2_{\rho} (S) \) and \(H^{1-\rho}_\rho (S) \). The space \(H \) is composed of differentials \(f(z_1, z_2)(dz_1)^q(dz_2)^{1-q} \) on \(S \times S \) such that

\[f(z_1, z_2) = \sum_{j=1}^\infty \sum_{k=1}^\infty A_{j,k} \Phi_j(z_1) \Psi_k(z_2), \quad \sum_{j=1}^\infty \sum_{k=1}^\infty |A_{j,k}|^2 < \infty. \]

(2.1)

The scalar product \((f, h)_H \) is introduced as follows:

\[(f, h)_H = \sum_{j=1}^\infty \sum_{k=1}^\infty A_{j,k} B_{j,k}, \]

where

\[h(z_1, z_2) = \sum_{j=1}^\infty \sum_{k=1}^\infty B_{j,k} \Phi_j(z_1) \Psi_k(z_2) \quad \text{and} \quad \sum_{j=1}^\infty \sum_{k=1}^\infty |B_{j,k}|^2 < \infty \]

(cf. [1, §8]).
Theorem 2.1. Suppose that
\[f(z_1, z_2)(dz_1)^q(dz_2)^{1-q} = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} A_{j,k} \Phi_j(z_1) \Psi_k(z_2)(dz_1)^q(dz_2)^{1-q} \in H. \]

Then \(f(z, z) \) can be uniquely decomposed as follows:
\[f(z, z) = h'(z) + \sum_{r=1}^{N} d_r Z_r(z) \quad \text{for} \ z \in S. \] (2.2)

It is understood that the \(d_r \) are constants, \(h(z) \) is analytic on \(S \), and
\[\int \int_S |h'(z)|^2 \, dx \, dy < \infty \quad (z = x + iy). \]

In addition,
\[\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |A_{j,k}|^2 > \min \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \left\{ \frac{1}{2\pi} \int_{\partial S} \psi_j(z_1)(dz_1)^q \varphi_k(z_1)(dz_1)^q \psi_k(z_2)(dz_2)^{1-q} \right\} \]
\[\cdot \rho(z_1)[\text{id} \; W(z_1, t)]^{1-2q} \cdot \frac{1}{2\pi} \int_{\partial S} \psi_j(z_2)(dz_2)^{1-q} \psi_k(z_2)(dz_2)^{1-q} (\rho(z_2))^{-1} [\text{id} \; W(z_2, t)]^{2q-1} \]
\[= \frac{1}{\pi} \int_{S} |h'(z)|^2 \, dx \, dy + \sum_{r=1}^{N} \sum_{\mu=1}^{N} D_{r,\mu} d_r \, d_\mu, \] (2.3)

where \(\|D_{r,\mu}\| \) is the inverse of \(\|C_{r,\mu}\| \). The minimum is taken here over all analytic functions \(\sum_{j=1}^{\infty} \psi_j(z_1) \psi_j(z_2) \) on \(S \times S \) satisfying
\[f(z, z) = \sum_{j=1}^{\infty} \psi_j(z) \psi_j(z) \quad \text{on} \ S, \] (2.4)
\[\psi_j(z)(dz)^q \in H_{2,q}'(S) \quad \text{and} \ \psi_j(z)(dz)^{1-q} \in H_{1,q}'(S). \]

Proof. The crucial ingredient in this proof is the observation that \(\|C_{r,\mu}\| \) is positive definite (cf. equation (1.4) and [5, p. 549]). Refer to the proof of Theorem 2.1 in [6]. The positive definiteness of \(\|C_{r,\mu}\| \) implies that
\[k(z, \bar{u}) = \sum_{r=1}^{N} \sum_{\mu=1}^{N} C_{r,\mu} \bar{Z}_r(u) Z_\mu(z) \]
is a reproducing kernel for the finite dimensional class \(\mathcal{F}_2 \) which is generated by \(\{ Z_r(z) \}_{r=1}^{N} \) (see [1, pp. 346–347]). The scalar product is given by
\[(f, h)_2 = \sum_{r=1}^{N} \sum_{\mu=1}^{N} D_{r,\mu} \bar{\xi}_r \eta_\mu \]
for \(f(z) = \sum_{j=1}^{\infty} \xi_j Z_j(z) \) and \(h(z) = \sum_{\eta} \eta Z_\eta(z) \). Note that
\[K_{q_1, q_2}(z, \bar{u})K_{1-q_1, q_2}(z, \bar{u}) \text{dz} \]
is the reproducing kernel of the space \(\mathcal{F} \) which is formed by restricting the functions in \(H \) to the diagonal set \(D = \{(z, z) | z \in S\} \) (cf. [1, p. 361, Theorem III]). For \(f \in \mathcal{F} \), the norm \(||f||_{\mathcal{F}} \) is given by
\[\min \|h\|_H \]
where \(h(z_1, z_2) \) ranges over all elements of \(H \) whose restriction to \(D \) is \(f(z) \). Of course, \(\|h\|_H \) denotes the norm of \(h \) in \(H \).

On the other hand, the space \(\mathcal{F} \) must coincide with the class corresponding kernel function \(K_{q_1, q_2}(z, \bar{u})K_{1-q_1, q_2}(z, \bar{u}) \) when it is considered as the sum of the kernel functions \(\pi K_E(z, \bar{u}) \) and \(k(z, \bar{u}) \) (see [1, pp. 352–357]). We thus obtain the decomposition (2.2). The uniqueness follows from [8, pp. 104 and 108].

Finally, from the definition of the norm in \(H \) [1, pp. 357–361], we have the inequality (2.3).

Using [1] and the preceding remark about \(\mathcal{F} \), we immediately obtain

Corollary 2.1. Any analytic function \(f(z) \) on \(S \) with a finite Dirichlet integral can be represented as a series

\[f'(z) = \sum_{j=1}^{\infty} \varphi_j(z)\psi_j(z) \quad \text{on } S, \quad (2.5) \]

where \(\varphi_j(z)(dz)^q \in H^q_{2\rho}(S) \) and \(\psi_j(z)(dz)^{1-q} \in H^1_{2\rho}(-S) \).

Furthermore, the equation

\[\frac{1}{\pi} \int_S |f'(z)|^2 \, dx \, dy \]

\[= \min \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \left\{ \frac{1}{2\pi} \int_{\partial S} \varphi_j(z_1)(dz_1)^q \frac{\varphi_k(z_1)(dz_1)^q}{|\rho(z_1)[\text{id}W(z_1, t)]|^{1-2q}} \right\} \]

\[\min \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \left\{ \frac{1}{2\pi} \int_{\partial S} \psi_j(z_2)(dz_2)^{1-q} \right\} \]

is valid. The minimum is taken here over all analytic functions \(\sum_{j=1}^{\infty} \varphi_j(z_1)\psi_j(z_2) \) satisfying (2.5).

Conversely, if the \(jk \) sum in (2.6) is finite, then the exact differential \(f'(z)dz \)
defined by the series (2.5) has a finite Dirichlet integral.

3. Some inequalities. As an application of the main theorem, we derive some inequalities. To start with, consider the case \(f(z_1, z_2) = \varphi(z_1)\psi(z_2) \). This leads to
Theorem 3.1. For any $\varphi(z)(dz)^q \in H_{2,q}^g(S)$ and $\psi(z)(dz)^{1-q} \in H_{2,1-q}^g(S)$, we have

\[
\frac{1}{2\pi} \int_{\partial S} |\varphi(z_1)(dz_1)^q|^2 |\varphi(z_1) \cdot \psi(z_2)(dz_2)^{1-q}|^2 |\psi(z_2)\cdot \varphi(z_1)(dz_1)^q|^{-1} |\text{id } W(z_1, t) - W(z_2, t)|^{2q-1} \leq \min \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \left\{ \frac{1}{2\pi} \int_{\partial S} \varphi_j(z_1)(dz_1)^q \varphi_k(z_1)(dz_1)^q \right\}
\]

\[
= \frac{1}{2\pi} \int_{\partial S} |h'(z)|^2 \, dx \, dy + \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} D_{r,\rho} \cdot \bar{d}_{\mu}, \tag{3.1}
\]

where $\varphi(z)\psi(z) = h'(z) + \sum_{r=1}^N d_r Z_r(z)$ on S, and where the minimum is taken over all analytic functions $\sum_{r=1}^N \varphi_j(z)\psi_j(z)$ on $S \times S$ such that

\[
\varphi(z)\psi(z) = \sum_{j=1}^{\infty} \varphi_j(z)\psi_j(z). \tag{3.2}
\]

Of course, $\varphi(z)(dz)^q \in H_{2,q}^g(S)$ and $\psi(z)(dz)^{1-q} \in H_{2,1-q}^g(S)$.

Equality holds in (3.1) if and only if $\varphi(z)\psi(z)$ is expressible in the form

\[
CK_{q,t,\rho}(z, \bar{u}) K_{1-q,1-\rho}(z, t) \text{ for some point } u \in S \text{ and for some constant } C.
\]

The equality statement in Theorem 3.1 will be proved in §5.

We can now take $q = 0$, $\varphi(z) \equiv 1$, $\psi(z) \equiv 1$, $\psi(z) \equiv f'(z)$. This yields

Corollary 3.1. For any analytic function $f(z)$ on $S \cup \partial S$, we have

\[
\int_{S} |f'(z)|^2 \, dx \, dy \leq \frac{1}{2} \int_{\partial S} |f'(z)|^2 \, |\text{id } W(z, t)|. \tag{3.3}
\]

Equality holds in (3.3) if and only if S is simply connected and $f'(z)$ is expressible in the form $C\pi K_{g,1}(z, t) = CK_{1,1}(z, t)$ for some constant C.

Regarding the equality statement in Corollary 3.1, we note that $K_{0,1}(z, \bar{u}) \equiv 1$ if and only if $u = t \, [3]$. Furthermore, we can compare (3.3) with the inequality

\[
\left(\frac{1}{\pi} \int_{S} |f'(z)|^2 \, dx \, dy \right)^2 \leq \left(\frac{1}{2\pi i} \int_{\partial S} \overline{f(z)} f'(z) \, dz \right)^2 \leq \frac{1}{2\pi} \int_{\partial S} |f'(z)|^2 \, |\text{id } W(z, t)| \leq \frac{1}{2\pi} \int_{\partial S} |f'(z)|^2 \, |\text{id } W(z, t)|.
\]
Let \(K_{1,t,1}^E(z, \bar{u})dz \) denote the reproducing kernel of the closed subspace of \(H_{2,1}^1(S) \) composed of exact analytic differentials on \(S \) (cf. [2] and [4]). Since \(L^E(z, u) = L^E(u, z) \) if and only if \(S \) is planar \([8, pp. 114-120]\), Theorem 3.3 in [2] requires a modification when \(g > 1 \). But, this is not difficult. Using Corollary 3.1, we now obtain

Corollary 3.2. For all \(t \) and \(u \in S \), we have
\[
K_{1,t,1}^E(u, \bar{u}) < \pi K^E(u, \bar{u}). \tag{3.4}
\]
Equality holds in (3.4) if and only if \(S \) is simply connected and \(u = t \).

Proof. From (3.3) and the extremal property of \(K^E(z, \bar{u}) \) \([8, pp. 135-137]\), we have
\[
\frac{1}{K^E(u, \bar{u})} = \int_S \left| \frac{K^E(z, \bar{u})}{K^E(u, \bar{u})} \right|^2 dx \, dy < \int_S \left| \frac{K_{1,t,1}^E(z, \bar{u})}{K_{1,t,1}^E(u, \bar{u})} \right|^2 dx \, dy
\]
\[
< \frac{1}{2} \int_S \left| \frac{K_{1,t,1}^E(z, \bar{u})}{K_{1,t,1}^E(u, \bar{u})} \right|^2 \frac{|dz|^2}{id \, W(z, t)} = \frac{\pi}{K_{1,t,1}^E(u, \bar{u})}. \tag{3.5}
\]

We note that (3.3) is, in general, not valid for arbitrary analytic differentials \(f(z) \, dz \). Indeed, suppose that inequality (3.3) were valid for \(K_{1,t,1}^E(z, \bar{t}) \, dz \). Then, from the argument of Corollary 3.2, we would have
\[
K_{1,t,1}(t, \bar{t}) < \pi K(t, \bar{t}), \tag{3.6}
\]
which implies a contradiction for doubly connected regions \(S \) (cf. [6, §7]). The relationship between \(K_{1,t,1}^E(z, \bar{u}) \) and \(\pi K^E(z, \bar{u}) \) is, in general, quite complicated. (See [4, equation (2.6)].)

On the other hand, by setting \(q = 0 \) and \(\rho(z) \equiv 1 \) in Theorem 3.3, we obtain

Corollary 3.3. For the critical points \(\{t_\mu\}_{\mu=1}^N \) of the Green's function \(g(z, t) \) of \(G \), the matrix
\[
\left\| \sum_{\mu=1}^N \frac{Z_\nu(t_\mu)Z_\nu(t_\mu)}{W''(t_\mu, t)} - D_{\nu,\nu} \right\|_{N \times N}
\]
is positive definite. A slight modification is required here when the \(t_\mu \) are not simple.

Proof. We consider the decomposition \(1 \cdot \sum_{\nu=1}^N d_\nu Z_\nu(z) \) for arbitrary constants \(d_\nu \). Then, we have
\[
\frac{1}{2\pi} \int_{\partial S} \left| \sum_{\nu=1}^N d_\nu Z_\nu(z) \, dz \right|^2 \frac{id \, W(z, t)}{id \, W(z, t)} > \sum_{\nu=1}^N \sum_{\nu'=1}^N D_{\nu,\nu'} d_\nu \overline{d_{\nu'}}. \tag{3.7}
\]
Using the residue theorem, we deduce the desired result.
4. Integral transform

By \(K_{q,1,\rho}(z, \bar{u}) K_{1-q,1,\rho}^{-1}(z, \bar{v}) \), as another application of the main theorem, we show that all the results of [7] are valid for the present \(H \).

Theorem 4.1. Assume that \(p > 1 \). Then, for \(\sigma \in L_p(\partial S) \),

\[
F_\sigma(z_1, z_2) = \int_{\partial S} \sigma(z) K_{q,1,\rho}(\zeta, \bar{z}_1) K_{1-q,1,\rho}^{-1}(z, \bar{z}_2) d\zeta
\]

belongs to \(H \) if and only if the projection \(h_1(z) \) of \(\sigma(z) \) onto \(H_{p,1}^0(S) \) belongs to the Bergman space of \(S \); that is,

\[
\int \int_S |h_1(z)|^2 \, dx \, dy < \infty.
\]

Proof. Refer to the proof of [7, Theorem 2.1]. The necessity is now apparent from Theorem 2.1. The crucial step in the sufficiency is to show that

\[
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \left| -2i \int_S h_1(z) \Phi_j(z) \Psi_k(z) \, dx \, dy \right|^2
\]

converges. For any double sequence \(\{A_{j,k}\} \) satisfying

\[
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |A_{j,k}| < \infty
\]

we consider the function \(f(z_1, z_2) \) defined by (2.1). Then, using Theorem 2.1, we have

\[
f(z, z) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} A_{j,k} \Phi_j(z) \Psi_k(z) = \tilde{f}'(z) + \sum_{r=1}^{N} \tilde{C}_r Z_r(z) \quad \text{on } S
\]

and

\[
\int \int_S |f(z, z)|^2 \, dx \, dy < \infty.
\]

Note that

\[
f_M(z, z) = \sum_{j=1}^{M} \sum_{k=1}^{M} A_{j,k} \Phi_j(z) \Psi_k(z)
\]

also can be uniquely decomposed as follows:

\[
f_M(z, z) = \tilde{f}_M'(z) + \sum_{r=1}^{N} \tilde{C}_r^{(M)} Z_r(z) \quad \text{on } S.
\]

From the main theorem, we see that the convergence of \(f_M(z, z) \, dz \) to \(f(z, z) \, dz \) in \(\mathcal{F} \) implies both the convergence of \(\tilde{f}_M(z) \) to \(\tilde{f}(z) \) in the Dirichlet norm and \(\lim_{M \to \infty} \tilde{C}_r^{(M)} = \tilde{C}_r \), for each \(\nu \). We thus obtain
\[
\int \int_S h'_1(z) \overline{f(z, z)} \, dx \, dy = \int \int_S h'_1(z) \left(\lim_{M \to \infty} f_M(z, z) \right) \, dx \, dy
\]

\[
= \int \int_S h'_1(z) \left(\lim_{M \to \infty} \tilde{f}_M(z) + \lim_{M \to \infty} \sum_{n=1}^{\infty} \tilde{C}^{(M)}_{n} Z_n(z) \right) \, dx \, dy
\]

\[
= \lim_{M \to \infty} \int \int_S h'_1(z) \left(\tilde{f}_M(z) + \sum_{n=1}^{\infty} \tilde{C}^{(M)}_{n} Z_n(z) \right) \, dx \, dy
\]

\[
= \sum_{n=1}^{\infty} \sum_{\kappa=1}^{\infty} \left(\int \int_S h'_1(z) \Phi_j(z) \Psi_k(z) \, dx \, dy \right) A_{j,k}
\] (4.9)

for any \(\{A_{j,k}\} \) satisfying (4.4). Hence, from the Landau theorem, we obtain the desired result.

The proof of this theorem shows that all the results of [7] are, in general, valid for the present \(H \).

Let \(H_{D(0)} \) denote the subspace of \(H \) formed by those functions in \(H \) which vanish along the diagonal set \(D \). Let \((H_{D(0)})^\perp \) denote the orthocomplement of \(H_{D(0)} \) in \(H \). As in [7], we obtain

Theorem 4.2. Any \(f(z_1, z_2)(dz_1)^q(dz_2)^{1-q} \in (H_{D(0)})^\perp \) is expressible in the form

\[
f(z_1, z_2) = \frac{1}{2\pi} \int_{\partial S} \frac{h(\xi) \, d\xi}{id \, W(\xi, t)} K_{q, t, \rho}(\xi, \bar{z}_1) K_{1-q, t, \rho-1}(\xi, \bar{z}_2) \, d\xi
\] (4.10)

for a uniquely determined \(h(z) \) \(dz \) in \(H_{2,1}(S) \).

Furthermore:

\[
h(z) = -W'(z, t) \left\{ \int_{t}^{1} \left(\sum_{\rho=1}^{N} X_{\rho}(f) L_{q, t, \rho}(\xi, t_{\rho}) L_{1-q, t, \rho-1}(\xi, t_{\rho}) + f(\xi, \bar{z}, \bar{t}) \right) d\xi \right\},
\] (4.11)

where the constants \(X_{\rho}(f) \) are uniquely determined using the equations

\[
\sum_{\rho=1}^{N} X_{\rho}(f) \int_{C_{\rho}} L_{q, t, \rho}(\xi, t_{\rho}) L_{1-q, t, \rho-1}(\xi, t_{\rho}) \, d\xi = - \int_{C_{\rho}} f(\xi, t) \, d\xi, \quad \mu = 1, 2, \ldots, N.
\] (4.12)

5. **Proof of the equality statement in Theorem 3.1.** As an application of Theorem 4.2, we now prove the equality statement in Theorem 3.1.

If equality holds in (3.1) for \(\varphi(z_1)(dz_1)^q(\psi(z_2)(dz_2)^{1-q} \in H \), then we have \(\varphi(z_1)(dz_1)^q(\psi(z_2)(dz_2)^{1-q} \in (H_{D(0)})^\perp \) (cf. [6, equation (3.2)]). Hence, by Theorem 4.2, we have

\[
\varphi(z_1) \psi(z_2) = \frac{1}{2\pi} \int_{\partial S} \frac{h(\xi) \, d\xi}{id \, W(\xi, t)} K_{q, t, \rho}(\xi, \bar{z}_1) K_{1-q, t, \rho-1}(\xi, \bar{z}_2) \, d\xi
\] (5.1)
with \(h(\zeta) d\zeta \in H^1_S(S) \). Consider any \(\Phi^{(0)}(z)(dz)^q \) such that: (i) \(\Phi^{(0)}(z) \neq 0 \); (ii) \(\Phi^{(0)}(z) \) is analytic on \(S \cup \partial S \); (iii) \(\Phi^{(0)}(z)(dz)^q \) is orthogonal to \(\varphi(z)(dz)^q \) in \(H^q_{2,\partial}(S) \). From (5.1), we obtain

\[
\int_{\partial S} \frac{h(\zeta)d\zeta}{id W(\zeta, t)} \Phi^{(0)}(\zeta) K_{1-q,\partial^{-1}}(\zeta, z_2) d\zeta = 0 \quad \text{for all } z_2 \in S
\]

and so

\[
\int_{\partial S} \frac{h(\zeta)d\zeta}{id W(\zeta, t)} \Phi^{(0)}(\zeta) f(\zeta)d\zeta = 0,
\]

for all \(f(\zeta)(dz)^q \in H^1_{2,\partial}(S) \). Hence, from the theorem of Cauchy-Read, we obtain

\[
\frac{h(\zeta)d\zeta}{id W(\zeta, t)} \Phi^{(0)}(\zeta)(dz)^q = g(\zeta)(dz)^q \quad \text{a.e. along } \partial S,
\]

with \(g(\zeta)(dz)^q \in H^q_{2,\partial}(S) \) (cf. [5, p. 549] and [6, equation (3.9)]). From (5.1), we deduce that

\[
\varphi(z_1)\varphi(z_2) = \frac{1}{2\pi} \int_{\partial S} \frac{g(\zeta)(dz)^q K_{q,\partial}(\zeta, \bar{z}_1) K_{1-q,\partial^{-1}}(\zeta, \bar{z}_2) d\zeta}{\Phi^{(0)}(\zeta)(dz)^q}.
\]

Using (5.4) and the residue theorem, we obtain

\[
\varphi(z_1)\varphi(z_2) = \sum_{j=1}^{a} \sum_{k=0}^{b} X_{j,k} \frac{\partial^k(K_{q,\partial}(z_1, \bar{u}_j) K_{1-q,\partial^{-1}}(z_2, \bar{u}_j))}{\partial u_j^k}.
\]

and so

\[
\varphi(z_1) = \sum_{j=1}^{a} \sum_{k=0}^{b} Y_{j,k}^{(1)} \frac{\partial^k K_{q,\partial}(z_1, \bar{u}_j)}{\partial u_j^k},
\]

\[
\psi(z_2) = \sum_{j=1}^{a} \sum_{k=0}^{b} Y_{j,k}^{(2)} \frac{\partial^k K_{1-q,\partial^{-1}}(z_2, \bar{u}_j)}{\partial u_j^k},
\]

for some points \(u_j \in S \) and some constants \(\{X_{j,k}\}, \{Y_{j,k}^{(1)}\} \) and \(\{Y_{j,k}^{(2)}\} \). From (1.1), we now obtain

\[
\sum_{j=1}^{a} \sum_{k=0}^{b} X_{j,k} \frac{\partial^k(L_{q,\partial}(z_1, u_j)L_{1-q,\partial^{-1}}(z_2, u_j))}{\partial u_j^k}
\]

\[
= \sum_{j'=1}^{a} \sum_{k'=0}^{b} \sum_{j=1}^{a} \sum_{k=0}^{b} Y_{j,k}^{(1)} Y_{j',k'}^{(2)} \frac{\partial^k L_{q,\partial}(z_1, u_j)}{\partial u_j^k} \frac{\partial^k L_{1-q,\partial^{-1}}(z_2, u_j)}{\partial u_j^{k'}}
\]

for all \(z_1 \) and \(z_2 \in S \). By setting \(z_1 = z_2 = z \) and comparing the orders of the poles at each \(u_j \), we see that \(X_{j,k} = 0 \) for all \(j \) and \(k \) such that \(k \neq 0 \), and so
\[Y_{j,k}^{(1)} = Y_{j,k}^{(2)} = 0 \text{ for all } j \text{ and } k \text{ such that } k \neq 0. \]

Thus

\[
\sum_{j=1}^{a} X_{j,0} L_{q,t,\phi}(z_1, u_j) L_{1-q,t,\phi^{-1}}(z_2, u_j) = \left(\sum_{j=1}^{a} Y_{j,0}^{(1)} L_{q,t,\phi}(z_1, u_j) \right) \left(\sum_{j=1}^{a} Y_{j,0}^{(2)} L_{1-q,t,\phi^{-1}}(z_2, u_j) \right)
\]

(5.9)

for all \(z_1 \) and \(z_2 \in S \). Without loss of generality, some \(X_{j,0} \) is nonzero. By considering (5.9) as the identity with respect to \(z_1 \),

\[
\sum_{j=1}^{a} X_{j,0} L_{1-q,t,\phi^{-1}}(z_2, u_j) = \frac{Y_{j,0}^{(1)}}{Y_{j,0}^{(2)}} \left(\sum_{j=1}^{a} Y_{j,0}^{(2)} L_{1-q,t,\phi^{-1}}(z_2, u_j) \right)
\]

(5.10)

for all \(z_2 \in S \). Therefore \(Y_{j,0}^{(2)} = 0 \) for all \(j'' \) except \(j_0 \) and so \(Y_{j,0}^{(1)} = 0 \) for all \(j'' \) except \(j_0 \). Hence \(X_{j,0} = 0 \) for all \(j \) except \(j_0 \). This yields the desired result:

\[
\psi(z_1) \psi(z_2) = X_{j,0} K_{q,t,\phi}(z_1, \bar{u}_{j_0}) K_{1-q,t,\phi^{-1}}(z_2, \bar{u}_{j_0}).
\]

(5.11)

Acknowledgement. The author gratefully acknowledges the help of the referee in improving the representation of this material.

References

7. ______, Integral transform by the product of two Szegö kernel functions (submitted).

DEPARTMENT OF MATHEMATICS, FACULTY OF ENGINEERING, GUNMA UNIVERSITY, 1-5-1, TENJIN-CHO, KIRYU 376, JAPAN