Twisted sums of sequence spaces and the three space problem
HTML articles powered by AMS MathViewer
- by N. J. Kalton and N. T. Peck
- Trans. Amer. Math. Soc. 255 (1979), 1-30
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542869-X
- PDF | Request permission
Abstract:
In this paper we study the following problem: given a complete locally bounded sequence space Y, construct a locally bounded space Z with a subspace X such that both X and $Z/X$ are isomorphic to Y, and such that X is uncomplemented in Z. We give a method for constructing Z under quite general conditions on Y, and we investigate some of the properties of Z. In particular, when Y is ${l_p} (1 < p < \infty )$, we identify the dual space of Z, we study the structure of basic sequences in Z, and we study the endomorphisms of Z and the projections of Z on infinite-dimensional subspaces.References
- Tosio Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), 588–594. MR 14182
- Per Enflo, Joram Lindenstrauss, and Gilles Pisier, On the “three space problem”, Math. Scand. 36 (1975), no. 2, 199–210. MR 383047, DOI 10.7146/math.scand.a-11571
- T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94. MR 445274, DOI 10.1007/BF02392234 M. I. Kadec and A. Pełcyzński, Bases, lacunary series and complemented subspaces in the spaces ${L_p}$, Studia Math. 21 (1962), 161-176.
- N. J. Kalton, The three space problem for locally bounded $F$-spaces, Compositio Math. 37 (1978), no. 3, 243–276. MR 511744
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253 A. Pełczyński and H. P. Rosenthal, Localization techniques in ${L^p}$ spaces, Studia Math. 52 (1975), 263-289.
- M. Ribe, Examples for the nonlocally convex three space problem, Proc. Amer. Math. Soc. 73 (1979), no. 3, 351–355. MR 518518, DOI 10.1090/S0002-9939-1979-0518518-9
- James W. Roberts, A nonlocally convex $F$-space with the Hahn-Banach approximation property, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976) Lecture Notes in Math., Vol. 604, Springer, Berlin, 1977, pp. 76–81. MR 0625305
- S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 471–473, XL (English, with Russian summary). MR 0088682
- Haskell P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36. MR 270122, DOI 10.4064/sm-37-1-13-36 —, On subspaces of ${L^p}$, Ann. of Math. 97 (1973), 344-373.
- Philippe Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. (Rozprawy Mat.) 131 (1976), 221 (French). MR 423044
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 255 (1979), 1-30
- MSC: Primary 46A45
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542869-X
- MathSciNet review: 542869